Do you want to publish a course? Click here

How is the derivative discontinuity related to steps in the exact Kohn-Sham potential?

110   0   0.0 ( 0 )
 Added by Eli Kraisler
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The reliability of density-functional calculations hinges on accurately approximating the unknown exchange-correlation (xc) potential. Common (semi-)local xc approximations lack the jump experienced by the exact xc potential as the number of electrons infinitesimally surpasses an integer, and the spatial steps that form in the potential as a result of the change in the decay rate of the density. These features are important for an accurate prediction of the fundamental gap and the distribution of charge in complex systems. Although well-known concepts, the exact relationship between them remained unclear. In this Letter, we establish the common fundamental origin of these two features of the exact xc potential via an analytical derivation. We support our result with an exact numerical solution of the many-electron Schroedinger equation for a single atom and a diatomic molecule in one dimension. Furthermore, we propose a way to extract the fundamental gap from the step structures in the potential.



rate research

Read More

We model a Kohn-Sham potential with a discontinuity at integer particle numbers derived from the GLLB approximation of Gritsenko et al. We evaluate the Kohn-Sham gap and the discontinuity to obtain the quasiparticle gap. This allows us to compare the Kohn-Sham gaps to those obtained by accurate many-body perturbation theory based optimized potential methods. In addition, the resulting quasiparticle band gap is compared to experimental gaps. In the GLLB model potential, the exchange-correlation hole is modeled using a GGA energy density and the response of the hole to density variations is evaluated by using the common-denominator approximation and homogeneous electron gas based assumptions. In our modification, we have chosen the PBEsol potential as the GGA to model the exchange hole, and add a consistent correlation potential. The method is implemented in the GPAW code, which allows efficient parallelization to study large systems. A fair agreement for Kohn-Sham and the quasiparticle band gaps with semiconductors and other band gap materials is obtained with a potential which is as fast as GGA to calculate.
Knowledge of exact properties of the exchange-correlation (xc) functional is important for improving the approximations made within density functional theory. Features such as steps in the exact xc potential are known to be necessary for yielding accurate densities, yet little is understood regarding their shape, magnitude and location. We use systems of a few electrons, where the exact electron density is known, to demonstrate general properties of steps. We find that steps occur at points in the electron density where there is a change in the `local effective ionization energy of the electrons. We provide practical arguments, based on the electron density, for determining the position, shape and height of steps for ground-state systems, and extend the concepts to time-dependent systems. These arguments are intended to inform the development of approximate functionals, such as the mixed localization potential (MLP), which already demonstrate their capability to produce steps in the Kohn-Sham potential.
The one-electron density of a many-electron system is the ground-state density of a one-electron Schrodinger equation. The potential $v$ appearing in this Schrodinger equation can be constructed in two ways: In density functional theory (DFT), $v$ is the sum of the Kohn-Sham (KS) potential and the Pauli potential, where the latter can be explicitly expressed in terms of the KS system of non-interacting electrons. As the KS system is fictitious, this construction is only indirectly related to the interacting many-electron system. In contrast, in the exact electron factorization (EEF), $v$ is a functional of the conditional wavefunction $phi$ that describes the spatial entanglement of the electrons in the interacting system. We compare the two constructions of the potential, provide a physical interpretation of the contributions to $v$ in the EEF, and relate it to DFT. With numerical studies of one-dimensional two- and three-electron systems, we illustrate how features of $phi$ translate to the one-electron potential $v$. We show that a change in $phi$ corresponds to a repulsive contribution to $v$, and we explain step structures of $v$ with a charge transfer encoded in $phi$. Furthermore, we provide analytic formulas for the components of $v$ by using a two-state model. Our work thus presents the mapping of a many-electron system to a one-electron system from another angle and provides insights into what determines the shape of the exact one-electron potential. We expect our findings to be helpful for the search of suitable approximations in DFT and in related theories.
We construct exact Kohn-Sham potentials for the ensemble density-functional theory (EDFT) from the ground and excited states of helium. The exchange-correlation (XC) potential is compared with the quasi-local-density approximation and both single determinant and symmetry eigenstate ghost-corrected exact exchange approximations. Symmetry eigenstate Hartree-exchange recovers distinctive features of the exact XC potential and is used to calculate the correlation potential. Unlike the exact case, excitation energies calculated from these approximations depend on ensemble weight, and it is shown that only the symmetry eigenstate method produces an ensemble derivative discontinuity. Differences in asymptotic and near-ground-state behavior of exact and approximate XC potentials are discussed in the context of producing accurate optical gaps.
Last year, at least 30,000 scientific papers used the Kohn-Sham scheme of density functional theory to solve electronic structure problems in a wide variety of scientific fields, ranging from materials science to biochemistry to astrophysics. Machine learning holds the promise of learning the kinetic energy functional via examples, by-passing the need to solve the Kohn-Sham equations. This should yield substantial savings in computer time, allowing either larger systems or longer time-scales to be tackled, but attempts to machine-learn this functional have been limited by the need to find its derivative. The present work overcomes this difficulty by directly learning the density-potential and energy-density maps for test systems and various molecules. Both improved accuracy and lower computational cost with this method are demonstrated by reproducing DFT energies for a range of molecular geometries generated during molecular dynamics simulations. Moreover, the methodology could be applied directly to quantum chemical calculations, allowing construction of density functionals of quantum-chemical accuracy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا