Do you want to publish a course? Click here

Tensor Networks with a Twist: Anyon-permuting domain walls and defects in PEPS

106   0   0.0 ( 0 )
 Added by Jacob C Bridgeman
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the realization of anyon-permuting symmetries of topological phases on the lattice using tensor networks. Working on the virtual level of a projected entangled pair state, we find matrix product operators (MPOs) that realize all unitary topological symmetries for the toric and color codes. These operators act as domain walls that enact the symmetry transformation on anyons as they cross. By considering open boundary conditions for these domain wall MPOs, we show how to introduce symmetry twists and defect lines into the state.



rate research

Read More

Tensor network states are used extensively as a mathematically convenient description of physically relevant states of many-body quantum systems. Those built on regular lattices, i.e. matrix product states (MPS) in dimension 1 and projected entangled pair states (PEPS) in dimension 2 or higher, are of particular interest in condensed matter physics. The general goal of this work is to characterize which features of MPS and PEPS are generic and which are, on the contrary, exceptional. This problem can be rephrased as follows: given an MPS or PEPS sampled at random, what are the features that it displays with either high or low probability? One property which we are particularly interested in is that of having either rapidly decaying or long-range correlations. In a nutshell, our main result is that translation-invariant MPS and PEPS typically exhibit exponential decay of correlations at a high rate. We have two distinct ways of getting to this conclusion, depending on the dimensional regime under consideration. Both yield intermediate results which are of independent interest, namely: the parent Hamiltonian and the transfer operator of such MPS and PEPS typically have a large spectral gap. In all these statements, our aim is to get a quantitative estimate of the considered quantity (generic correlation length or spectral gap), which has the best possible dependency on the physical and bond dimensions of the random MPS or PEPS.
Cluster expansions for the exponential of local operators are constructed using tensor networks. In contrast to other approaches, the cluster expansion does not break any spatial or internal symmetries and exhibits a very favourable prefactor to the error scaling versus bond dimension. This is illustrated by time evolving a matrix product state using very large time steps, and by constructing a novel robust algorithm for finding ground states of 2-dimensional Hamiltonians using projected entangled pair states as fixed points of 2-dimensional transfer matrices.
The projected entangled pair state (PEPS) representation of quantum states on two-dimensional lattices induces an entanglement based hierarchy in state space. We show that the lowest levels of this hierarchy exhibit an enormously rich structure including states with critical and topological properties as well as resonating valence bond states. We prove, in particular, that coheren
We investigate the potential of tensor network based machine learning methods to scale to large image and text data sets. For that, we study how the mutual information between a subregion and its complement scales with the subsystem size $L$, similarly to how it is done in quantum many-body physics. We find that for text, the mutual information scales as a power law $L^ u$ with a close to volume law exponent, indicating that text cannot be efficiently described by 1D tensor networks. For images, the scaling is close to an area law, hinting at 2D tensor networks such as PEPS could have an adequate expressibility. For the numerical analysis, we introduce a mutual information estimator based on autoregressive networks, and we also use convolutional neural networks in a neural estimator method.
Tensor network states provide an efficient class of states that faithfully capture strongly correlated quantum models and systems in classical statistical mechanics. While tensor networks can now be seen as becoming standard tools in the description of such complex many-body systems, close to optimal variational principles based on such states are less obvious to come by. In this work, we generalize a recently proposed variational uniform matrix product state algorithm for capturing one-dimensional quantum lattices in the thermodynamic limit, to the study of regular two-dimensional tensor networks with a non-trivial unit cell. A key property of the algorithm is a computational effort that scales linearly rather than exponentially in the size of the unit cell. We demonstrate the performance of our approach on the computation of the classical partition functions of the antiferromagnetic Ising model and interacting dimers on the square lattice, as well as of a quantum doped resonating valence bond state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا