No Arabic abstract
In higher educational institutes, many students have to struggle hard to complete different courses since there is no dedicated support offered to students who need special attention in the registered courses. Machine learning techniques can be utilized for students grades prediction in different courses. Such techniques would help students to improve their performance based on predicted grades and would enable instructors to identify such individuals who might need assistance in the courses. In this paper, we use Collaborative Filtering (CF), Matrix Factorization (MF), and Restricted Boltzmann Machines (RBM) techniques to systematically analyze a real-world data collected from Information Technology University (ITU), Lahore, Pakistan. We evaluate the academic performance of ITU students who got admission in the bachelors degree program in ITUs Electrical Engineering department. The RBM technique is found to be better than the other techniques used in predicting the students performance in the particular course.
This paper illustrates the similarities between the problems of customer churn and employee turnover. An example of employee turnover prediction model leveraging classical machine learning techniques is developed. Model outputs are then discussed to design & test employee retention policies. This type of retention discussion is, to our knowledge, innovative and constitutes the main value of this paper.
An enduring issue in higher education is student retention to successful graduation. National statistics indicate that most higher education institutions have four-year degree completion rates around 50 percent, or just half of their student populations. While there are prediction models which illuminate what factors assist with college student success, interventions that support course selections on a semester-to-semester basis have yet to be deeply understood. To further this goal, we develop a system to predict students grades in the courses they will enroll in during the next enrollment term by learning patterns from historical transcript data coupled with additional information about students, courses and the instructors teaching them. We explore a variety of classic and state-of-the-art techniques which have proven effective for recommendation tasks in the e-commerce domain. In our experiments, Factorization Machines (FM), Random Forests (RF), and the Personalized Multi-Linear Regression model achieve the lowest prediction error. Application of a novel feature selection technique is key to the predictive success and interpretability of the FM. By comparing feature importance across populations and across models, we uncover strong connections between instructor characteristics and student performance. We also discover key differences between transfer and non-transfer students. Ultimately we find that a hybrid FM-RF method can be used to accurately predict grades for both new and returning students taking both new and existing courses. Application of these techniques holds promise for student degree planning, instructor interventions, and personalized advising, all of which could improve retention and academic performance.
High-quality computer science education is limited by the difficulty of providing instructor feedback to students at scale. While this feedback could in principle be automated, supervised approaches to predicting the correct feedback are bottlenecked by the intractability of annotating large quantities of student code. In this paper, we instead frame the problem of providing feedback as few-shot classification, where a meta-learner adapts to give feedback to student code on a new programming question from just a few examples annotated by instructors. Because data for meta-training is limited, we propose a number of amendments to the typical few-shot learning framework, including task augmentation to create synthetic tasks, and additional side information to build stronger priors about each task. These additions are combined with a transformer architecture to embed discrete sequences (e.g. code) to a prototypical representation of a feedback class label. On a suite of few-shot natural language processing tasks, we match or outperform state-of-the-art performance. Then, on a collection of student solutions to exam questions from an introductory university course, we show that our approach reaches an average precision of 88% on unseen questions, surpassing the 82% precision of teaching assistants. Our approach was successfully deployed to deliver feedback to 16,000 student exam-solutions in a programming course offered by a tier 1 university. This is, to the best of our knowledge, the first successful deployment of a machine learning based feedback to open-ended student code.
Along with the development of AI democratization, the machine learning approach, in particular neural networks, has been applied to wide-range applications. In different application scenarios, the neural network will be accelerated on the tailored computing platform. The acceleration of neural networks on classical computing platforms, such as CPU, GPU, FPGA, ASIC, has been widely studied; however, when the scale of the application consistently grows up, the memory bottleneck becomes obvious, widely known as memory-wall. In response to such a challenge, advanced quantum computing, which can represent 2^N states with N quantum bits (qubits), is regarded as a promising solution. It is imminent to know how to design the quantum circuit for accelerating neural networks. Most recently, there are initial works studying how to map neural networks to actual quantum processors. To better understand the state-of-the-art design and inspire new design methodology, this paper carries out a case study to demonstrate an end-to-end implementation. On the neural network side, we employ the multilayer perceptron to complete image classification tasks using the standard and widely used MNIST dataset. On the quantum computing side, we target IBM Quantum processors, which can be programmed and simulated by using IBM Qiskit. This work targets the acceleration of the inference phase of a trained neural network on the quantum processor. Along with the case study, we will demonstrate the typical procedure for mapping neural networks to quantum circuits.
The sudden change in the landscape of Philippine education, including the implementation of K to 12 program, Higher Education institutions, have been struggling in attracting freshmen applicants coupled with difficulties in projecting incoming enrollees. Private HEIs Enrolment target directly impacts success factors of Higher Education Institutions. A review of the various characteristics of freshman applicants influencing their admission status at a Philippine university were included in this study. The dataset used was obtained from the Admissions Office of the University via an online form which was circulated to all prospective applicants. Using Logistic Regression, a predictive model was developed to determine the likelihood that an enrolled student would seek enrolment in the institution or not based on both students and institutions characteristics. The LR Model was used as the algorithm in the development of the Decision Support System. Weka was utilized on selection of features and building the LR model. The DSS was coded and designed using R Studio and R Shiny which includes data visualization and individual prediction.