No Arabic abstract
The kinematic morphology-density relation for early-type galaxies posits that those galaxies with low angular momentum are preferentially found in the highest-density regions of the universe. We use a large sample of galaxy groups with halo masses 10^12.5 < M_halo < 10^14.5 M_sun/h observed with the Mapping Nearby Galaxies at APO (MaNGA) survey to examine whether there is a correlation between local environment and rotational support that is independent of stellar mass. We find no compelling evidence for a relationship between the angular momentum content of early-type galaxies and either local overdensity or radial position within the group at fixed stellar mass.
We study the link between the kinematic-morphology of galaxies, as inferred from integral-field stellar kinematics, and their relation between mass and star formation rate (SFR). Our sample consists of $sim 3200$ galaxies with integral-field spectroscopic data from the MaNGA survey with available determinations of their effective stellar angular momentum within the half-light radius $lambda_{R_e}$. We find that for star-forming galaxies, namely along the star formation main sequence (SFMS), the $lambda_{R_e}$ values remain large and almost unchanged over about two orders of magnitude in stellar mass, with the exception of the lowest masses $mathcal{M}_{star}lesssim2times10^{9} mathcal{M}_{odot}$, where $lambda_{R_e}$ slightly decreases. The SFMS is dominated by spiral galaxies with small bulges. Below the SFMS, but above the characteristic stellar mass $mathcal{M}_{rm crit}approx2times10^{11} mathcal{M}_{odot}$, there is a sharp decrease in $lambda_{R_e}$ with decreasing star formation rate: massive galaxies well below the SFMS are mainly slow-rotator early-type galaxies, namely genuinely spheroidal galaxies without disks. Below the SFMS and below $mathcal{M}_{rm crit}$ the decrease of $lambda_{R_e}$ with decreasing SFR becomes modest or nearly absent: low-mass galaxies well below the SFMS, are fast-rotator early-type galaxies, and contain fast-rotating stellar disks like their star-forming counterparts. We also find a small but clear environmental dependence for the massive galaxies: in the mass range $10^{10.9}-10^{11.5} mathcal{M}_{odot}$, galaxies in rich groups or denser regions or classified as central galaxies have lower values of $lambda_{R_e}$. While no environmental dependence is found for galaxies of lower mass. We discuss how our results can be understood as due to the different star formation and mass assembly histories of galaxies with varying mass.
The mean stellar alpha-to-iron abundance ratio ([$alpha$/Fe]) of a galaxy is an indicator of galactic star formation timescale. It is important for understanding the star formation history of early-type galaxies (ETGs) as their star formation processes have basically stopped. Using the model templates which are made by Vazdekis et al., we apply the pPXF based spectral fitting method to estimate the [$alpha$/Fe] of 196 high signal-to-noise ratio ETGs from the MaNGA survey. The velocity dispersions within 1R$_e$ ($sigma_{e}$) range from 27 to 270 km/s. We find a flat relation between the mean [$alpha$/Fe] within the 1R$_e^{maj}$ ellipses and log($sigma_{e}$), even if limiting to the massive sample with log($sigma_{e}$/km s$^{-1}$)$>$1.9. However, the relation becomes positive after we exclude the Mg$_1$ feature in our fits, which agrees with the results from the previous work with other stellar population models, albeit with relatively large scatter. It indicates that the spectral fits with Vazdekis models could give basically the consistent predictions of [$alpha$/Fe] with previous studies when the Mg$_b$ index is used, but do not work well at the Mg$_1$ band when their $alpha$-enhanced version is employed in the metal-rich regime. We suggest avoiding this rather wide index, which covers 471AA, as it might suffer from other effects such as flux-calibration issues. For reference, we also measure the stellar population radial gradients within 1R$_e^{maj}$ ellipses. Due to the low resolution of age estimations for old objects and the Mg$_1$ issue, the uncertainties of these gradients cannot be neglected.
The late assembly of massive galaxies is thought to be dominated by stellar accretion in their outskirts (beyond 2 effective radii Re) due to dry, minor galaxy mergers. We use observations of 1010 passive early-type galaxies (ETGs) within z<0.15 from SDSS IV MaNGA to search for evidence of this accretion. The outputs from the stellar population fitting codes FIREFLY, pPXF, and Prospector are compared to control for systematic errors in stellar metallicity (Z) estimation. We find that the average radial logZ/Zsun profiles of ETGs in various stellar mass (M) bins are not linear. As a result, these profiles are poorly characterized by a single gradient value, explaining why weak trends reported in previous work can be difficult to interpret. Instead, we examine the full radial extent of stellar metallicity profiles and find them to flatten in the outskirts of M>10^{11}Msun ETGs. This is a signature of stellar accretion. Based on a toy model for stellar metallicity profiles, we infer the ex-situ stellar mass fraction in ETGs as a function of M and galactocentric radius. We find that ex-situ stars at 2Re make up 20% of the projected stellar mass of M<10^{10.5}Msun ETGs, rising up to 80% for M>10^{11.5}Msun ETGs.
By applying spectroscopic decomposition methods to a sample of MaNGA early-type galaxies, we separate out spatially and kinematically distinct stellar populations, allowing us to explore the similarities and differences between galaxy bulges and discs, and how they affect the global properties of the galaxy. We find that the components have interesting variations in their stellar populations, and display different kinematics. Bulges tend to be consistently more metal rich than their disc counterparts, and while the ages of both components are comparable, there is an interesting tail of younger, more metal poor discs. Bulges and discs follow their own distinct kinematic relationships, both on the plane of the stellar spin parameter, lambda_R, and ellipticity, and in the relation between stellar mass and specific angular momentum, j, with the location of the galaxy as a whole on these planes being determined by how much bulge and disc it contains. As a check of the physical significance of the kinematic decompositions, we also dynamically model the individual galaxy components within the global potential of the galaxy. The resulting components exhibit kinematic parameters consistent with those from the spectroscopic decomposition, and though the dynamical modelling suffers from some degeneracies, the bulges and discs display systematically different intrinsic dynamical properties. This work demonstrates the value in considering the individual components of galaxies rather than treating them as a single entity, which neglects information that may be crucial in understanding where, when and how galaxies evolve into the systems we see today.
We study the HI K-band Tully-Fisher relation and the baryonic Tully-Fisher relation for a sample of 16 early-type galaxies, taken from the ATLAS3D sample, which all have very regular HI disks extending well beyond the optical body (> 5 R_eff). We use the kinematics of these disks to estimate the circular velocity at large radii for these galaxies. We find that the Tully-Fisher relation for our early-type galaxies is offset by about 0.5-0.7 magnitudes from the relation for spiral galaxies. The residuals with respect to the spiral Tully-Fisher relation correlate with estimates of the stellar mass-to-light ratio, suggesting that the offset between the relations is mainly driven by differences in stellar populations. We also observe a small offset between our Tully-Fisher relation with the relation derived for the ATLAS3D sample based on CO data representing the galaxies inner regions (< 1 R_eff). This indicates that the circular velocities at large radii are systematically 10% lower than those near 0.5-1 R_eff, in line with recent determinations of the shape of the mass profile of early-type galaxies. The baryonic Tully-Fisher relation of our sample is distinctly tighter than the standard one, in particular when using mass-to-light ratios based on dynamical models of the stellar kinematics. We find that the early-type galaxies fall on the spiral baryonic Tully-Fisher relation if one assumes M/L_K = 0.54 M_sun/L_sun for the stellar populations of the spirals, a value similar to that found by recent studies of the dynamics of spiral galaxies. Such a mass-to-light ratio for spiral galaxies would imply that their disks are 60-70% of maximal. Our analysis increases the range of galaxy morphologies for which the baryonic Tully-Fisher relations holds, strengthening previous claims that it is a more fundamental scaling relation than the classical Tully-Fisher relation.