No Arabic abstract
We study the HI K-band Tully-Fisher relation and the baryonic Tully-Fisher relation for a sample of 16 early-type galaxies, taken from the ATLAS3D sample, which all have very regular HI disks extending well beyond the optical body (> 5 R_eff). We use the kinematics of these disks to estimate the circular velocity at large radii for these galaxies. We find that the Tully-Fisher relation for our early-type galaxies is offset by about 0.5-0.7 magnitudes from the relation for spiral galaxies. The residuals with respect to the spiral Tully-Fisher relation correlate with estimates of the stellar mass-to-light ratio, suggesting that the offset between the relations is mainly driven by differences in stellar populations. We also observe a small offset between our Tully-Fisher relation with the relation derived for the ATLAS3D sample based on CO data representing the galaxies inner regions (< 1 R_eff). This indicates that the circular velocities at large radii are systematically 10% lower than those near 0.5-1 R_eff, in line with recent determinations of the shape of the mass profile of early-type galaxies. The baryonic Tully-Fisher relation of our sample is distinctly tighter than the standard one, in particular when using mass-to-light ratios based on dynamical models of the stellar kinematics. We find that the early-type galaxies fall on the spiral baryonic Tully-Fisher relation if one assumes M/L_K = 0.54 M_sun/L_sun for the stellar populations of the spirals, a value similar to that found by recent studies of the dynamics of spiral galaxies. Such a mass-to-light ratio for spiral galaxies would imply that their disks are 60-70% of maximal. Our analysis increases the range of galaxy morphologies for which the baryonic Tully-Fisher relations holds, strengthening previous claims that it is a more fundamental scaling relation than the classical Tully-Fisher relation.
We demonstrate that the comparison of Tully-Fisher relations (TFRs) derived from global HI line widths to TFRs derived from the circular velocity profiles of dynamical models (or stellar kinematic observations corrected for asymmetric drift) is vulnerable to systematic and uncertain biases introduced by the different measures of rotation used. We therefore argue that to constrain the relative locations of the TFRs of spiral and S0 galaxies, the same tracer and measure must be used for both samples. Using detailed near-infrared imaging and the circular velocities of axisymmetric Jeans models of 14 nearby edge-on Sa-Sb spirals and 14 nearby edge-on S0s drawn from a range of environments, we find that S0s lie on a TFR with the same slope as the spirals, but are on average 0.53+/-0.15 mag fainter at Ks-band at a given rotational velocity. This is a significantly smaller offset than that measured in earlier studies of the S0 TFR, which we attribute to our elimination of the bias associated with using different rotation measures and our use of earlier type spirals as a reference. Since our measurement of the offset avoids systematic biases, it should be preferred to previous estimates. A spiral stellar population in which star formation is truncated would take ~1 Gyr to fade by 0.53 mag at Ks-band. If S0s are the products of a simple truncation of star formation in spirals, then this finding is difficult to reconcile with the observed evolution of the spiral/S0 fraction with redshift. Recent star formation could explain the observed lack of fading in S0s, but the offset of the S0 TFR persists as a function of both stellar and dynamical mass. We show that the offset of the S0 TFR could therefore be explained by a systematic difference between the total mass distributions of S0s and spirals, in the sense that S0s need to be smaller or more concentrated than spirals.
We study the locus of dwarf and giant early and late-type galaxies on the Tully-Fisher relation (TFR), the stellar mass Tully-Fisher relation (sTFR) and the so-called baryonic or HI gas+stellar mass Tully-Fisher relation (gsTFR). We show that early-type and late-type galaxies, from dwarfs to giants, trace different yet approximately parallel TFRs. Surprisingly, early-type and late-type galaxies trace a single yet curved sTFR over a range of 3.5 orders of magnitude in stellar mass. Moreover, all galaxies trace a single, linear gsTFR, over 3.5 orders of magnitude in HI gas+stellar mass. Dwarf ellipticals, however, lie slightly below the gsTFR. This may indicate that early-type dwarfs, contrary to the late-types, have lost their gas, e.g. by galactic winds or ram-pressure stripping. Overall, environment only plays a secondary role in shaping these relations, making them a rather ``clean cosmological tool. LCDM simulations predict roughly the correct slopes for these relations.
In this paper we investigate the statistical properties of the Tully-Fisher relation for a sample of 32 galaxies with measured distances from the Cepheid period-luminosity relation and/or TRGB stars. We take advantage of panchromatic photometry in 12 bands (from FUV to 4.5 $mu$m) and of spatially resolved HI kinematics. We use these data together with three kinematic measures ($W^{i}_{50}$, $V_{max}$ and $V_{flat}$) extracted from the global HI profiles or HI rotation curves, so as to construct 36 correlations allowing us to select the one with the least scatter. We introduce a tightness parameter $sigma_{perp}$ of the TFr, in order to obtain a slope-independent measure of the goodness of fit. We find that the tightest correlation occurs when we select the 3.6 $mu$m photometric band together with the $V_{flat}$ parameter extracted from the HI rotation curve.
Using a sample of 67 galaxies from the MIGHTEE Survey Early Science data we study the HI-based baryonic Tully-Fisher relation (bTFr), covering a period of $sim$one billion years ($0 leq z leq 0.081 $). We consider the bTFr based on two different rotational velocity measures: the width of the global HI profile and $rm V_{out}$, measured as the outermost rotational velocity from the resolved HI rotation curves. Both relations exhibit very low intrinsic scatter orthogonal to the best-fit relation ($sigma_{perp}=0.07pm0.01$), comparable to the SPARC sample at $z simeq 0$. The slopes of the relations are similar and consistent with the $ z simeq 0$ studies ($3.66^{+0.35}_{-0.29}$ for $rm W_{50}$ and $3.47^{+0.37}_{-0.30}$ for $rm V_{out}$). We find no evidence that the bTFr has evolved over the last billion years, and all galaxies in our sample are consistent with the same relation independent of redshift and the rotational velocity measure. Our results set up a reference for all future studies of the HI-based bTFr as a function of redshift that will be conducted with the ongoing deep SKA pathfinders surveys.
We present a study of the local B and K-band Tully-Fisher Relation (TFR) between absolute magnitude and maximum circular speed in S0 galaxies. To make this study, we have combined kinematic data, including a new high-quality spectral data set from the Fornax Cluster, with homogeneous photometry from the RC3 and 2MASS catalogues, to construct the largest sample of S0 galaxies ever used in a study of the TFR. Independent of environment, S0 galaxies are found to lie systematically below the TFR for nearby spirals in both optical and infrared bands. This offset can be crudely interpreted as arising from the luminosity evolution of spiral galaxies that have faded since ceasing star formation. However, we also find a large scatter in the TFR. We show that most of this scatter is intrinsic, not due to the observational uncertainties. The presence of such a large scatter means that the population of S0 galaxies cannot have formed exclusively by the above simple fading mechanism after all transforming at a single epoch. To better understand the complexity of the transformation mechanism, we have searched for correlations between the offset from the TFR and other properties of the galaxies such as their structural properties, central velocity dispersions and ages (as estimated from line indices). For the Fornax Cluster data, the offset from the TFR relates with the estimated age of the stars in the individual galaxies, in the sense and of the magnitude expected if S0 galaxies had passively faded since being converted from spirals. This correlation implies that a significant part of the scatter in the TFR arises from the different times at which galaxies began their transformation.