Do you want to publish a course? Click here

Composite hot-subdwarf binaries -- I. The spectroscopically confirmed sdB sample

88   0   0.0 ( 0 )
 Added by Joris Vos
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Hot subdwarf-B (sdB) stars in long-period binaries are found to be on eccentric orbits, even though current binary-evolution theory predicts these objects to be circularised before the onset of Roche-lobe overflow (RLOF). To increase our understanding of binary interaction processes during the RLOF phase, we started a long term observing campaign to study wide sdB binaries. In this article we present a composite-binary-sdB sample, and the results of the spectral analysis of 9 such systems. The grid search in stellar parameters (GSSP) code is used to derive atmospheric parameters for the cool companions. To cross-check our results and also characterize the hot subdwarfs we used the independent XTgrid code, which employs Tlusty non-local thermodynamic equilibrium models to derive atmospheric parameters for the sdB component and Phoenix synthetic spectra for the cool companions. The independent GSSP and XTgrid codes are found to show good agreement for three test systems that have atmospheric parameters available in the literature. Based on the rotational velocity of the companions, an estimate for the mass accreted during the RLOF phase and the miminum duration of that phase is made. It is found that the mass transfer to the companion is minimal during the subdwarf formation.



rate research

Read More

The predicted orbital period histogram of an sdB population is bimodal with a peak at short (< 10 days) and long (> 250 days) periods. Observationally, there are many short-period sdB systems known, but only very few long-period sdB binaries are identified. As these predictions are based on poorly understood binary interaction processes, it is of prime importance to confront the predictions to observational data. In this contribution we aim to determine the absolute dimensions of the long-period sdB+MS binary system PG1104+243. High-resolution spectroscopy time-series were obtained with HERMES at the Mercator telescope at La Palma, and analyzed to obtain radial velocities of both components. Photometry from the literature was used to construct the spectral energy distribution (SED) of the binary. Atmosphere models were used to fit this SED and determine the surface gravity and temperature of both components. The gravitational redshift provided an independent confirmation of the surface gravity of the sdB component. An orbital period of 753 +- 3 d and a mass ratio of q = 0.637 +- 0.015 were found from the RV-curves. The sdB component has an effective temperature of Teff = 33500 +- 1200 K and a surface gravity of logg = 5.84 +- 0.08 dex, while the cool companion is found to be a G-type star with Teff = 5930 +- 160 K and logg = 4.29 +- 0.05 dex. Assuming a canonical mass of Msdb = 0.47 Msun, the MS component has a mass of 0.74 +- 0.07 Msun, and its Teff corresponds to what is expected for a terminal age main-sequence star with sub-solar metalicity. PG1104+243 is the first long-period sdB binary in which accurate physical parameters of both components could be determined, and the first sdB binary in which the gravitational redshift is measured. Furthermore, PG1104+243 is the first sdB+MS system that shows consistent evidence for being formed through stable Roche-lobe overflow.
We started a new project which aims to find compact hot subdwarf binaries at low Galactic latitudes. Targets are selected from several photometric surveys and a spectroscopic follow-up campaign to find radial velocity variations on timescales as short as tens of minutes has been started. Once radial variations are detected phase-resolved spectroscopy is obtained to measure the radial velocity curve and the mass function of the system. The observing strategy is described and the discovery of two short period hot subdwarf binaries is presented. UVEXJ032855.25+503529.8 contains a hot subdwarf B star (sdB) orbited by a cool M-dwarf in a P=0.11017 days orbit. The lightcurve shows a strong reflection effect but no eclipses are visible. HS 1741+2133 is a short period (P=0.20 days) sdB most likely with a white dwarf (WD) companion.
We present photometry and moderate-resolution spectroscopy of the luminous red variable [HBS2006] 40671 originally detected as a possible nova in the galaxy M33. We found that the star is a pulsating Mira-type variable with a long period of 665 days and an amplitude exceeding 7 mag in the R band. [HBS2006] 40671 is the first confirmed Mira-type star in M33. It is one of the most luminous Mira-type variables. In the K band its mean absolute magnitude is M_K = -9.5, its bolometric magnitude measured in the maximum light is also extreme, M_bol = -7.4. The spectral type of the star in the maximum is M2e - M3e. The heliocentric radial velocity of the star is -475 km/s. There is a big negative excess (-210~km/s) in radial velocity of [HBS2006] 40671 relative to the average radial velocity of stars in its neighborhood pointing at an exceptional peculiar motion of the star. All the extreme properties of the new Mira star make it important for further studies.
157 - S. Geier , T. Kupfer , U. Heber 2015
Hot subdwarfs (sdBs) are core helium-burning stars, which lost almost their entire hydrogen envelope in the red-giant phase. Since a high fraction of those stars are in close binary systems, common envelope ejection is an important formation channel. We identified a total population of 51 close sdB+WD binaries based on time-resolved spectroscopy and multi-band photometry, derive the WD mass distribution and constrain the future evolution of these systems. Most WDs in those binaries have masses significantly below the average mass of single WDs and a high fraction of them might therefore have helium cores. We found 12 systems that will merge in less than a Hubble time and evolve to become either massive C/O WDs, AM,CVn systems, RCrB stars or even explode as supernovae type Ia.
83 - Wen Hou , A-Li Luo , Yin-Bi Li 2019
A sample of Cataclysmic Variables (CVs) is presented including spectroscopically identified 380 spectra of 245 objects, of which 58 CV candidates are new discoveries. The BaggingTopPush and the Random Forest algorithms are applied to the Fifth Data Release (DR5) of LAMOST to retrieve CVs with strong emission lines and with broad absorption lines respectively. Based on spectroscopic classification, 134 dwarf novae, 41 nova-like variables and 19 magnetic CVs are identified from the sample. In addition, 89 high--inclination systems and 33 CVs showing companion stars are recognized and discussed for their distinct spectral characteristics. Comparisons between CVs from LAMOST and from published catalogs are made in spatial and magnitude distribution, and the difference of their locus in Gaia color--absolute magnitude diagram (CaMD) are also investigated. More interestingly, for two dwarf novae observed through LAMOST and SDSS in different epoch, their spectra both in quiescence phase and during outburst are exhibited.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا