Do you want to publish a course? Click here

The first spectroscopically confirmed Mira star in M33

148   0   0.0 ( 0 )
 Added by Elena Barsukova
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present photometry and moderate-resolution spectroscopy of the luminous red variable [HBS2006] 40671 originally detected as a possible nova in the galaxy M33. We found that the star is a pulsating Mira-type variable with a long period of 665 days and an amplitude exceeding 7 mag in the R band. [HBS2006] 40671 is the first confirmed Mira-type star in M33. It is one of the most luminous Mira-type variables. In the K band its mean absolute magnitude is M_K = -9.5, its bolometric magnitude measured in the maximum light is also extreme, M_bol = -7.4. The spectral type of the star in the maximum is M2e - M3e. The heliocentric radial velocity of the star is -475 km/s. There is a big negative excess (-210~km/s) in radial velocity of [HBS2006] 40671 relative to the average radial velocity of stars in its neighborhood pointing at an exceptional peculiar motion of the star. All the extreme properties of the new Mira star make it important for further studies.



rate research

Read More

We present spectroscopic follow-up observations of 68 red, faint candidates from our multi-epoch, multi-wavelength, previously published survey of NGC 2264. Using near-infrared spectra from VLT/KMOS, we measure spectral types and extinction for 32 young low-mass sources. We confirm 13 as brown dwarfs in NGC 2264, with spectral types between M6 and M8, corresponding to masses between 0.02 and 0.08$M_{odot}$. These are the first spectroscopically confirmed brown dwarfs in this benchmark cluster. 19 more objects are found to be young M-type stars of NGC 2264 with masses of 0.08 to 0.3$,M_{odot}$. 7 of the confirmed brown dwarfs as well as 15 of the M-stars have IR excess caused by a disc. Comparing with isochrones, the typical age of the confirmed brown dwarfs is $<$0.5 to 5Myr. More than half of the newly identified brown dwarfs and very low mass stars have ages $<$0.5Myr, significantly younger than the bulk of the known cluster population. Based on the success rate of our spectroscopic follow-up, we estimate that NGC 2264 hosts 200-600 brown dwarfs in total (in the given mass range). This would correspond to a star-to-brown dwarf ratio between 2.5:1 and 7.5:1. We determine the slope of the substellar mass function as $alpha = 0.43^{+0.41}_{-0.56}$, these values are consistent with those measured for other young clusters. This points to a uniform substellar mass function across all star forming environments.
We present the discovery of 1847 Mira candidates in the Local Group galaxy M33 using a novel semi-parametric periodogram technique coupled with a Random Forest classifier. The algorithms were applied to ~2.4x10^5 I-band light curves previously obtained by the M33 Synoptic Stellar Survey. We derive preliminary Period-Luminosity relations at optical, near- & mid-infrared wavelengths and compare them to the corresponding relations in the Large Magellanic Cloud.
Hot subdwarf-B (sdB) stars in long-period binaries are found to be on eccentric orbits, even though current binary-evolution theory predicts these objects to be circularised before the onset of Roche-lobe overflow (RLOF). To increase our understanding of binary interaction processes during the RLOF phase, we started a long term observing campaign to study wide sdB binaries. In this article we present a composite-binary-sdB sample, and the results of the spectral analysis of 9 such systems. The grid search in stellar parameters (GSSP) code is used to derive atmospheric parameters for the cool companions. To cross-check our results and also characterize the hot subdwarfs we used the independent XTgrid code, which employs Tlusty non-local thermodynamic equilibrium models to derive atmospheric parameters for the sdB component and Phoenix synthetic spectra for the cool companions. The independent GSSP and XTgrid codes are found to show good agreement for three test systems that have atmospheric parameters available in the literature. Based on the rotational velocity of the companions, an estimate for the mass accreted during the RLOF phase and the miminum duration of that phase is made. It is found that the mass transfer to the companion is minimal during the subdwarf formation.
We have obtained low and medium resolution spectra of 9 brown dwarf candidate members of Coma Berenices and the Hyades using SpEX on the NASA InfaRed Telescope Facility and LIRIS on the William Herschel Telescope. We conclude that 7 of these objects are indeed late M or early L dwarfs, and that two are likely members of Coma Berenices, and four of the Hyades. Two objects, cbd40 and Hy3 are suggested to be a field L dwarfs, although there is also a possibility that Hy3 is an unresolved binary belonging to the cluster. These objects have masses between 71 and 53 M$_{rm Jup}$, close to the hydrogen burning boundary for these clusters, however only an optical detection of Lithium can confirm if they are truly substellar.
We have obtained a low-resolution optical spectrum for one of the faintest cluster member candidates in Praesepe with the Optical System for Imaging and low Resolution Integrated Spectroscopy mounted on the 10.4m Gran Telescopio de Canarias. We confirm spectroscopically the first L dwarf member in Praesepe, UGCS J084510.66+214817.1. We derived an optical spectral type of L0.3+/-0.4 and estimated its effective temperature to Teff=2279+/-371 K and a mass of 71.1+/-23.0M_Jup, according to state-of-the-art models, placing it at the hydrogen-burning boundary. We measured the equivalent width of the gravity-sensitive sodium doublet at 8182/8194 A, which adds credit to the membership of this new L dwarf to Praesepe. We also derived a probability of ~20.5% that our candidate would be a field L0 dwarf. We conclude that this object is likely to be a true member of Praesepe, with evidence of being a binary system.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا