Do you want to publish a course? Click here

Generating Visual Representations for Zero-Shot Classification

98   0   0.0 ( 0 )
 Added by Maxime Bucher
 Publication date 2017
and research's language is English
 Authors Maxime Bucher




Ask ChatGPT about the research

This paper addresses the task of learning an image clas-sifier when some categories are defined by semantic descriptions only (e.g. visual attributes) while the others are defined by exemplar images as well. This task is often referred to as the Zero-Shot classification task (ZSC). Most of the previous methods rely on learning a common embedding space allowing to compare visual features of unknown categories with semantic descriptions. This paper argues that these approaches are limited as i) efficient discrimi-native classifiers cant be used ii) classification tasks with seen and unseen categories (Generalized Zero-Shot Classification or GZSC) cant be addressed efficiently. In contrast , this paper suggests to address ZSC and GZSC by i) learning a conditional generator using seen classes ii) generate artificial training examples for the categories without exemplars. ZSC is then turned into a standard supervised learning problem. Experiments with 4 generative models and 5 datasets experimentally validate the approach, giving state-of-the-art results on both ZSC and GZSC.



rate research

Read More

New categories can be discovered by transforming semantic features into synthesized visual features without corresponding training samples in zero-shot image classification. Although significant progress has been made in generating high-quality synthesized visual features using generative adversarial networks, guaranteeing semantic consistency between the semantic features and visual features remains very challenging. In this paper, we propose a novel zero-shot learning approach, GAN-CST, based on class knowledge to visual feature learning to tackle the problem. The approach consists of three parts, class knowledge overlay, semi-supervised learning and triplet loss. It applies class knowledge overlay (CKO) to obtain knowledge not only from the corresponding class but also from other classes that have the knowledge overlay. It ensures that the knowledge-to-visual learning process has adequate information to generate synthesized visual features. The approach also applies a semi-supervised learning process to re-train knowledge-to-visual model. It contributes to reinforcing synthesized visual features generation as well as new category prediction. We tabulate results on a number of benchmark datasets demonstrating that the proposed model delivers superior performance over state-of-the-art approaches.
207 - Shichao Jia , Zeyu Li , Nuo Chen 2021
Zero-shot classification is a promising paradigm to solve an applicable problem when the training classes and test classes are disjoint. Achieving this usually needs experts to externalize their domain knowledge by manually specifying a class-attribute matrix to define which classes have which attributes. Designing a suitable class-attribute matrix is the key to the subsequent procedure, but this design process is tedious and trial-and-error with no guidance. This paper proposes a visual explainable active learning approach with its design and implementation called semantic navigator to solve the above problems. This approach promotes human-AI teaming with four actions (ask, explain, recommend, respond) in each interaction loop. The machine asks contrastive questions to guide humans in the thinking process of attributes. A novel visualization called semantic map explains the current status of the machine. Therefore analysts can better understand why the machine misclassifies objects. Moreover, the machine recommends the labels of classes for each attribute to ease the labeling burden. Finally, humans can steer the model by modifying the labels interactively, and the machine adjusts its recommendations. The visual explainable active learning approach improves humans efficiency of building zero-shot classification models interactively, compared with the method without guidance. We justify our results with user studies using the standard benchmarks for zero-shot classification.
142 - Chenrui Zhang , Yuxin Peng 2018
Zero-Shot Learning (ZSL) in video classification is a promising research direction, which aims to tackle the challenge from explosive growth of video categories. Most existing methods exploit seen-to-unseen correlation via learning a projection between visual and semantic spaces. However, such projection-based paradigms cannot fully utilize the discriminative information implied in data distribution, and commonly suffer from the information degradation issue caused by heterogeneity gap. In this paper, we propose a visual data synthesis framework via GAN to address these problems. Specifically, both semantic knowledge and visual distribution are leveraged to synthesize video feature of unseen categories, and ZSL can be turned into typical supervised problem with the synthetic features. First, we propose multi-level semantic inference to boost video feature synthesis, which captures the discriminative information implied in joint visual-semantic distribution via feature-level and label-level semantic inference. Second, we propose Matching-aware Mutual Information Correlation to overcome information degradation issue, which captures seen-to-unseen correlation in matched and mismatched visual-semantic pairs by mutual information, providing the zero-shot synthesis procedure with robust guidance signals. Experimental results on four video datasets demonstrate that our approach can improve the zero-shot video classification performance significantly.
Zero-shot learning aims to recognize unseen objects using their semantic representations. Most existing works use visual attributes labeled by humans, not suitable for large-scale applications. In this paper, we revisit the use of documents as semantic representations. We argue that documents like Wikipedia pages contain rich visual information, which however can easily be buried by the vast amount of non-visual sentences. To address this issue, we propose a semi-automatic mechanism for visual sentence extraction that leverages the document section headers and the clustering structure of visual sentences. The extracted visual sentences, after a novel weighting scheme to distinguish similar classes, essentially form semantic representations like visual attributes but need much less human effort. On the ImageNet dataset with over 10,000 unseen classes, our representations lead to a 64% relative improvement against the commonly used ones.
We present a novel counterfactual framework for both Zero-Shot Learning (ZSL) and Open-Set Recognition (OSR), whose common challenge is generalizing to the unseen-classes by only training on the seen-classes. Our idea stems from the observation that the generated samples for unseen-classes are often out of the true distribution, which causes severe recognition rate imbalance between the seen-class (high) and unseen-class (low). We show that the key reason is that the generation is not Counterfactual Faithful, and thus we propose a faithful one, whose generation is from the sample-specific counterfactual question: What would the sample look like, if we set its class attribute to a certain class, while keeping its sample attribute unchanged? Thanks to the faithfulness, we can apply the Consistency Rule to perform unseen/seen binary classification, by asking: Would its counterfactual still look like itself? If ``yes, the sample is from a certain class, and ``no otherwise. Through extensive experiments on ZSL and OSR, we demonstrate that our framework effectively mitigates the seen/unseen imbalance and hence significantly improves the overall performance. Note that this framework is orthogonal to existing methods, thus, it can serve as a new baseline to evaluate how ZSL/OSR models generalize. Codes are available at https://github.com/yue-zhongqi/gcm-cf.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا