No Arabic abstract
We present and analyze a minimal hydrodynamic model of a vertically vibrated liquid drop that undergoes dynamic shape transformations. In agreement with experiments, a circular lens-shaped drop is unstable above a critical vibration amplitude, spontaneously elongating in horizontal direction. Smaller drops elongate into localized states that oscillate with half of the vibration frequency. Larger drops evolve by transforming into a snake-like structure with gradually increasing length. The worm state is long-lasting with a potential to fragmentat into smaller drops.
We report an experimental study of liquid drops moving against gravity, when placed on a vertically vibrating inclined plate, which is partially wetted by the drop. The frequency of vibrations ranges from 30 to 200 Hz, and, above a threshold in vibration acceleration, drops experience an upward motion. We attribute this surprising motion to the deformations of the drop, as a consequence of an up or down symmetry breaking induced by the presence of the substrate. We relate the direction of motion to contact angle measurements. This phenomenon can be used to move a drop along an arbitrary path in a plane, without special surface treatments or localized forcing.
Using quantum Monte Carlo methods we have studied dilute Bose-Bose mixtures with attractive interspecies interaction in the limit of zero temperature. The calculations are exact within some statistical noise and thus go beyond previous perturbative estimations. By tuning the intensity of the attraction, we observe the evolution of an $N$-particle system from a gas to a self-bound liquid drop. This observation agrees with recent experimental findings and allows for the study of an ultradilute liquid never observed before in Nature.
Solid particles floating at a liquid interface exhibit a long-ranged attraction mediated by surface tension. In the absence of bulk elasticity, this is the dominant lateral interaction of mechanical origin. Here we show that an analogous long-range interaction occurs between adjacent droplets on solid substrates, which crucially relies on a combination of capillarity and bulk elasticity. We experimentally observe the interaction between droplets on soft gels and provide a theoretical framework that quantitatively predicts the migration velocity of the droplets. Remarkably, we find that while on thick substrates the interaction is purely attractive and leads to drop-drop coalescence, for relatively thin substrates a short-range repulsion occurs which prevents the two drops from coming into direct contact. This versatile, new interaction is the liquid-on-solid analogue of the Cheerios effect. The effect will strongly influence the condensation and coarsening of drop soft polymer films, and has potential implications for colloidal assembly and in mechanobiology.
A previously unreported regime of type III intermittency is observed in a vertically vibrated milliliter-sized liquid drop submerged in a more viscous and less dense immiscible fluid layer supported by a hydrophobic solid plate. As the vibration amplitude is gradually increased, subharmonic Faraday waves are excited at the upper surface of the drop. We find a narrow window of vibration amplitudes slightly above the Faraday threshold, where the drop exhibits an irregular sequence of large amplitude bursting events alternating with intervals of low amplitude activity. The triggering physical mechanism is linked to the competition between surface Faraday waves and the shape deformation mode of the drop.
We study the motion of oil drops propelled by actin polymerization in cell extracts. Drops deform and acquire a pear-like shape under the action of the elastic stresses exerted by the actin comet. We solve this free boundary problem and calculate the drop shape taking into account the elasticity of the actin gel and the variation of the polymerization velocity with normal stress. The pressure balance on the liquid drop imposes a zero propulsive force if gradients in surface tension or internal pressure are not taken into account. Quantitative parameters of actin polymerization are obtained by fitting theory to experiment.