Do you want to publish a course? Click here

Ultradilute quantum liquid drops

78   0   0.0 ( 0 )
 Added by Jordi Boronat
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using quantum Monte Carlo methods we have studied dilute Bose-Bose mixtures with attractive interspecies interaction in the limit of zero temperature. The calculations are exact within some statistical noise and thus go beyond previous perturbative estimations. By tuning the intensity of the attraction, we observe the evolution of an $N$-particle system from a gas to a self-bound liquid drop. This observation agrees with recent experimental findings and allows for the study of an ultradilute liquid never observed before in Nature.

rate research

Read More

We show that ultradilute quantum liquids can be formed with ultracold bosonic dipolar atoms in a bilayer geometry. Contrary to previous realizations of ultradilute liquids, there is no need of stabilizing the system with an additional repulsive short-range potential. The advantage of the proposed system is that dipolar interactions on their own are sufficient for creation of a self-bound state and no additional short-range potential is needed for the stabilization. We perform quantum Monte Carlo simulations and find a rich ground state phase diagram that contains quantum phase transitions between liquid, solid, atomic gas, and molecular gas phases. The stabilization mechanism of the liquid phase is consistent with the microscopic scenario in which the effective dimer-dimer attraction is balanced by an effective three-dimer repulsion. The equilibrium density of the liquid, which is extremely small, can be controlled by the interlayer distance. From the equation of state, we extract the spinodal density, below which the homogeneous system breaks into droplets. Our results offer a new example of a two-dimensional interacting dipolar liquid in a clean and highly controllable setup.
We have studied dilute Bose-Bose mixtures of atoms with attractive interspecies and repulsive intraspecies interactions using quantum Monte Carlo methods at $T=0$. Using a number of models for interactions, we determine the range of validity of the universal equation of state of the symmetric liquid mixture as a function of two parameters: the $s$-wave scattering length and the effective range of the interaction potential. It is shown that the Lee-Huang-Yang correction is sufficient only for extremely dilute liquids with the additional restriction that the range of the potential is small enough. Based on the quantum Monte Carlo equation of state we develop a new density functional which goes beyond the Lee-Huang-Yang term and use it together with local density approximation to determine density profiles of realistic self-bound drops.
The simultaneous presence of two competing inter-particle interactions can lead to the emergence of new phenomena in a many-body system. Among others, such effects are expected in dipolar Bose-Einstein condensates, subject to dipole-dipole interaction and short-range repulsion. Magnetic quantum gases and in particular Dysprosium gases, offering a comparable short-range contact and a long-range dipolar interaction energy, remarkably exhibit such emergent phenomena. In addition an effective cancellation of mean-field effects of the two interactions results in a pronounced importance of quantum-mechanical beyond mean-field effects. For a weakly-dominant dipolar interaction the striking consequence is the existence of a new state of matter equilibrated by the balance between weak mean-field attraction and beyond mean-field repulsion. Though exemplified here in the case of dipolar Bose gases, this state of matter should appear also with other microscopic interactions types, provided a competition results in an effective cancellation of the total mean-field. The macroscopic state takes the form of so-called quantum droplets. We present the effects of a long-range dipolar interaction between these droplets.
We present and analyze a minimal hydrodynamic model of a vertically vibrated liquid drop that undergoes dynamic shape transformations. In agreement with experiments, a circular lens-shaped drop is unstable above a critical vibration amplitude, spontaneously elongating in horizontal direction. Smaller drops elongate into localized states that oscillate with half of the vibration frequency. Larger drops evolve by transforming into a snake-like structure with gradually increasing length. The worm state is long-lasting with a potential to fragmentat into smaller drops.
Saturation properties are directly linked to the short-range scale of the two-body interaction of the particles. The case of helium is particular, from one hand the two-body potential has a strong repulsion at short distances. On the other hand, the extremely weak binding of the helium dimer locates this system very close to the unitary limit allowing for a description based on an effective theory. At leading order of this theory a two- and a three-body term appear, each one characterized by a low energy constant. In a potential model this description corresponds to a soft potential model with a two-body term purely attractive plus a three-body term purely repulsive constructed to describe the dimer and trimer binding energies. Here we analyse the capability of this model to describe the saturation properties making a direct link between the low energy scale and the short-range correlations. We will show that the energy per particle, $E_N/N$, can be obtained with reasonable accuracy at leading order extending the validity of this approximation, characterizing universal behavior in few-boson systems close to the unitary limit, to the many-body system.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا