Do you want to publish a course? Click here

Towards Interpretable Deep Neural Networks by Leveraging Adversarial Examples

102   0   0.0 ( 0 )
 Added by Yinpeng Dong
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Deep neural networks (DNNs) have demonstrated impressive performance on a wide array of tasks, but they are usually considered opaque since internal structure and learned parameters are not interpretable. In this paper, we re-examine the internal representations of DNNs using adversarial images, which are generated by an ensemble-optimization algorithm. We find that: (1) the neurons in DNNs do not truly detect semantic objects/parts, but respond to objects/parts only as recurrent discriminative patches; (2) deep visual representations are not robust distributed codes of visual concepts because the representations of adversarial images are largely not consistent with those of real images, although they have similar visual appearance, both of which are different from previous findings. To further improve the interpretability of DNNs, we propose an adversarial training scheme with a consistent loss such that the neurons are endowed with human-interpretable concepts. The induced interpretable representations enable us to trace eventual outcomes back to influential neurons. Therefore, human users can know how the models make predictions, as well as when and why they make errors.



rate research

Read More

Deep networks for Monocular Depth Estimation (MDE) have achieved promising performance recently and it is of great importance to further understand the interpretability of these networks. Existing methods attempt to provide posthoc explanations by investigating visual cues, which may not explore the internal representations learned by deep networks. In this paper, we find that some hidden units of the network are selective to certain ranges of depth, and thus such behavior can be served as a way to interpret the internal representations. Based on our observations, we quantify the interpretability of a deep MDE network by the depth selectivity of its hidden units. Moreover, we then propose a method to train interpretable MDE deep networks without changing their original architectures, by assigning a depth range for each unit to select. Experimental results demonstrate that our method is able to enhance the interpretability of deep MDE networks by largely improving the depth selectivity of their units, while not harming or even improving the depth estimation accuracy. We further provide a comprehensive analysis to show the reliability of selective units, the applicability of our method on different layers, models, and datasets, and a demonstration on analysis of model error. Source code and models are available at https://github.com/youzunzhi/InterpretableMDE .
Adversarial examples (AEs) are images that can mislead deep neural network (DNN) classifiers via introducing slight perturbations into original images. This security vulnerability has led to vast research in recent years because it can introduce real-world threats into systems that rely on neural networks. Yet, a deep understanding of the characteristics of adversarial examples has remained elusive. We propose a new way of achieving such understanding through a recent development, namely, invertible neural models with Lipschitz continuous mapping functions from the input to the output. With the ability to invert any latent representation back to its corresponding input image, we can investigate adversarial examples at a deeper level and disentangle the adversarial examples latent representation. Given this new perspective, we propose a fast latent space adversarial example generation method that could accelerate adversarial training. Moreover, this new perspective could contribute to new ways of adversarial example detection.
288 - Yingwei Li , Song Bai , Yuyin Zhou 2018
Recent development of adversarial attacks has proven that ensemble-based methods outperform traditional, non-ensemble ones in black-box attack. However, as it is computationally prohibitive to acquire a family of diverse models, these methods achieve inferior performance constrained by the limited number of models to be ensembled. In this paper, we propose Ghost Networks to improve the transferability of adversarial examples. The critical principle of ghost networks is to apply feature-level perturbations to an existing model to potentially create a huge set of diverse models. After that, models are subsequently fused by longitudinal ensemble. Extensive experimental results suggest that the number of networks is essential for improving the transferability of adversarial examples, but it is less necessary to independently train different networks and ensemble them in an intensive aggregation way. Instead, our work can be used as a computationally cheap and easily applied plug-in to improve adversarial approaches both in single-model and multi-model attack, compatible with residual and non-residual networks. By reproducing the NeurIPS 2017 adversarial competition, our method outperforms the No.1 attack submission by a large margin, demonstrating its effectiveness and efficiency. Code is available at https://github.com/LiYingwei/ghost-network.
Convolutional neural networks (CNNs) have been successfully used in a range of tasks. However, CNNs are often viewed as black-box and lack of interpretability. One main reason is due to the filter-class entanglement -- an intricate many-to-many correspondence between filters and classes. Most existing works attempt post-hoc interpretation on a pre-trained model, while neglecting to reduce the entanglement underlying the model. In contrast, we focus on alleviating filter-class entanglement during training. Inspired by cellular differentiation, we propose a novel strategy to train interpretable CNNs by encouraging class-specific filters, among which each filter responds to only one (or few) class. Concretely, we design a learnable sparse Class-Specific Gate (CSG) structure to assign each filter with one (or few) class in a flexible way. The gate allows a filters activation to pass only when the input samples come from the specific class. Extensive experiments demonstrate the fabulous performance of our method in generating a sparse and highly class-related representation of the input, which leads to stronger interpretability. Moreover, comparing with the standard training strategy, our model displays benefits in applications like object localization and adversarial sample detection. Code link: https://github.com/hyliang96/CSGCNN.
80 - Rui Zhao 2020
With further development in the fields of computer vision, network security, natural language processing and so on so forth, deep learning technology gradually exposed certain security risks. The existing deep learning algorithms cannot effectively describe the essential characteristics of data, making the algorithm unable to give the correct result in the face of malicious input. Based on current security threats faced by deep learning, this paper introduces the problem of adversarial examples in deep learning, sorts out the existing attack and defense methods of the black box and white box, and classifies them. It briefly describes the application of some adversarial examples in different scenarios in recent years, compares several defense technologies of adversarial examples, and finally summarizes the problems in this research field and prospects for its future development. This paper introduces the common white box attack methods in detail, and further compares the similarities and differences between the attack of the black and white box. Correspondingly, the author also introduces the defense methods, and analyzes the performance of these methods against the black and white box attack.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا