Do you want to publish a course? Click here

The Vulnerability of the Neural Networks Against Adversarial Examples in Deep Learning Algorithms

81   0   0.0 ( 0 )
 Added by Rui Zhao
 Publication date 2020
and research's language is English
 Authors Rui Zhao




Ask ChatGPT about the research

With further development in the fields of computer vision, network security, natural language processing and so on so forth, deep learning technology gradually exposed certain security risks. The existing deep learning algorithms cannot effectively describe the essential characteristics of data, making the algorithm unable to give the correct result in the face of malicious input. Based on current security threats faced by deep learning, this paper introduces the problem of adversarial examples in deep learning, sorts out the existing attack and defense methods of the black box and white box, and classifies them. It briefly describes the application of some adversarial examples in different scenarios in recent years, compares several defense technologies of adversarial examples, and finally summarizes the problems in this research field and prospects for its future development. This paper introduces the common white box attack methods in detail, and further compares the similarities and differences between the attack of the black and white box. Correspondingly, the author also introduces the defense methods, and analyzes the performance of these methods against the black and white box attack.



rate research

Read More

166 - Bowei Xi , Yujie Chen , Fan Fei 2021
The paper develops a new adversarial attack against deep neural networks (DNN), based on applying bio-inspired design to moving physical objects. To the best of our knowledge, this is the first work to introduce physical attacks with a moving object. Instead of following the dominating attack strategy in the existing literature, i.e., to introduce minor perturbations to a digital input or a stationary physical object, we show two new successful attack strategies in this paper. We show by superimposing several patterns onto one physical object, a DNN becomes confused and picks one of the patterns to assign a class label. Our experiment with three flapping wing robots demonstrates the possibility of developing an adversarial camouflage to cause a targeted mistake by DNN. We also show certain motion can reduce the dependency among consecutive frames in a video and make an object detector blind, i.e., not able to detect an object exists in the video. Hence in a successful physical attack against DNN, targeted motion against the system should also be considered.
Machine learning-based malware detection is known to be vulnerable to adversarial evasion attacks. The state-of-the-art is that there are no effective defenses against these attacks. As a response to the adversarial malware classification challenge organized by the MIT Lincoln Lab and associated with the AAAI-19 Workshop on Artificial Intelligence for Cyber Security (AICS2019), we propose six guiding principles to enhance the robustness of deep neural networks. Some of these principles have been scattered in the literature, but the others are introduced in this paper for the first time. Under the guidance of these six principles, we propose a defense framework to enhance the robustness of deep neural networks against adversarial malware evasion attacks. By conducting experiments with the Drebin Android malware dataset, we show that the framework can achieve a 98.49% accuracy (on average) against grey-box attacks, where the attacker knows some information about the defense and the defender knows some information about the attack, and an 89.14% accuracy (on average) against the more capable white-box attacks, where the attacker knows everything about the defense and the defender knows some information about the attack. The framework wins the AICS2019 challenge by achieving a 76.02% accuracy, where neither the attacker (i.e., the challenge organizer) knows the framework or defense nor we (the defender) know the attacks. This gap highlights the importance of knowing about the attack.
176 - Siyue Wang , Xiao Wang , Pu Zhao 2018
Deep neural networks (DNNs) are known vulnerable to adversarial attacks. That is, adversarial examples, obtained by adding delicately crafted distortions onto original legal inputs, can mislead a DNN to classify them as any target labels. This work provides a solution to hardening DNNs under adversarial attacks through defensive dropout. Besides using dropout during training for the best test accuracy, we propose to use dropout also at test time to achieve strong defense effects. We consider the problem of building robust DNNs as an attacker-defender two-player game, where the attacker and the defender know each others strategies and try to optimize their own strategies towards an equilibrium. Based on the observations of the effect of test dropout rate on test accuracy and attack success rate, we propose a defensive dropout algorithm to determine an optimal test dropout rate given the neural network model and the attackers strategy for generating adversarial examples.We also investigate the mechanism behind the outstanding defense effects achieved by the proposed defensive dropout. Comparing with stochastic activation pruning (SAP), another defense method through introducing randomness into the DNN model, we find that our defensive dropout achieves much larger variances of the gradients, which is the key for the improved defense effects (much lower attack success rate). For example, our defensive dropout can reduce the attack success rate from 100% to 13.89% under the currently strongest attack i.e., C&W attack on MNIST dataset.
The vulnerability of deep neural networks (DNNs) to adversarial examples is well documented. Under the strong white-box threat model, where attackers have full access to DNN internals, recent work has produced continual advancements in defenses, often followed by more powerful attacks that break them. Meanwhile, research on the more realistic black-box threat model has focused almost entirely on reducing the query-cost of attacks, making them increasingly practical for ML models already deployed today. This paper proposes and evaluates Blacklight, a new defense against black-box adversarial attacks. Blacklight targets a key property of black-box attacks: to compute adversarial examples, they produce sequences of highly similar images while trying to minimize the distance from some initial benign input. To detect an attack, Blacklight computes for each query image a compact set of one-way hash values that form a probabilistic fingerprint. Variants of an image produce nearly identical fingerprints, and fingerprint generation is robust against manipulation. We evaluate Blacklight on 5 state-of-the-art black-box attacks, across a variety of models and classification tasks. While the most efficient attacks take thousands or tens of thousands of queries to complete, Blacklight identifies them all, often after only a handful of queries. Blacklight is also robust against several powerful countermeasures, including an optimal black-box attack that approximates white-box attacks in efficiency. Finally, Blacklight significantly outperforms the only known alternative in both detection coverage of attack queries and resistance against persistent attackers.
In this work, we show how to jointly exploit adversarial perturbation and model poisoning vulnerabilities to practically launch a new stealthy attack, dubbed AdvTrojan. AdvTrojan is stealthy because it can be activated only when: 1) a carefully crafted adversarial perturbation is injected into the input examples during inference, and 2) a Trojan backdoor is implanted during the training process of the model. We leverage adversarial noise in the input space to move Trojan-infected examples across the model decision boundary, making it difficult to detect. The stealthiness behavior of AdvTrojan fools the users into accidentally trust the infected model as a robust classifier against adversarial examples. AdvTrojan can be implemented by only poisoning the training data similar to conventional Trojan backdoor attacks. Our thorough analysis and extensive experiments on several benchmark datasets show that AdvTrojan can bypass existing defenses with a success rate close to 100% in most of our experimental scenarios and can be extended to attack federated learning tasks as well.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا