No Arabic abstract
In this publication we continue the work started in Quintero Noda et al. (2017) examining this time a numerical simulation of a magnetic flux tube concentration. Our goal is to study if the physical phenomena that take place in it, in particular, the magnetic pumping, leaves a specific imprint on the examined spectral lines. We find that the profiles from the interior of the flux tube are periodically dopplershifted following an oscillation pattern that is also reflected in the amplitude of the circular polarization signals. In addition, we analyse the properties of the Stokes profiles at the edges of the flux tube discovering the presence of linear polarization signals for the Ca II lines, although they are weak with an amplitude around 0.5% of the continuum intensity. Finally, we compute the response functions to perturbations in the longitudinal field and we estimate the field strength using the weak field approximation. Our results indicate that the height of formation of the spectral lines changes during the magnetic pumping process which makes the interpretation of the inferred magnetic field strength and its evolution more difficult. These results complement those from previous works demonstrating the capabilities and limitations of the 850 nm spectrum for chromospheric Zeeman polarimetry in a very dynamic and complex atmosphere.
Future solar missions and ground-based telescopes aim to understand the magnetism of the solar chromosphere. We performed a supporting study in Quintero Noda et al. (2016) focused on the infrared Ca II 8542 A line and we concluded that is one of the best candidates because it is sensitive to a large range of atmospheric heights, from the photosphere to the middle chromosphere. However, we believe that it is worth to try improving the results produced by this line observing additional spectral lines. In that regard, we examined the neighbour solar spectrum looking for spectral lines that could increase the sensitivity to the atmospheric parameters. Interestingly, we discovered several photospheric lines that greatly improve the photospheric sensitivity to the magnetic field vector. Moreover, they are located close to a second chromospheric line that also belongs to the Ca II infrared triplet, i.e. the Ca II 8498 A line, and enhances the sensitivity to the atmospheric parameters at chromospheric layers. We conclude that the lines in the vicinity of the Ca II 8542 A line not only increase its sensitivity to the atmospheric parameters at all layers, but also they constitute an excellent spectral window for chromospheric polarimetry.
We investigate the diagnostic potential of the spectral lines at 850 nm for understanding the magnetism of the lower atmosphere. For that purpose, we use a newly developed 3D simulation of a chromospheric jet to check the sensitivity of the spectral lines to this phenomenon as well as our ability to infer the atmospheric information through spectropolarimetric
Solar chromospheric fibrils, as observed in the core of strong chromospheric spectral lines, extend from photospheric field concentrations suggesting that they trace magnetic field lines. These images have been historically used as proxies of magnetic fields for many purposes. We use a Bayesian hierarchical model to analyze several tens of thousands of pixels in spectro-polarimetric chromospheric images of penumbrae and chromospheric fibrils. We compare the alignment between the field azimuth inferred from the linear polarization signals through the transverse Zeeman effect and the direction of the fibrils in the image. We conclude that, in the analyzed fields of view, fibrils are often well aligned with the magnetic field azimuth. Despite this alignment, the analysis also shows that there is a non-negligible dispersion. In penumbral filaments, we find a dispersion with a standard deviation of ~16 degrees, while this dispersion goes up to ~34 degrees in less magnetized regions.
Context. A proper estimate of the chromospheric magnetic fields is believed to improve modelling of both active region and coronal mass ejection evolution. Aims. We investigate the similarity between the chromospheric magnetic field inferred from observations and the field obtained from a magnetohydrostatic (MHS) extrapolation. Methods. Based Fe i 6173 {AA} and Ca ii 8542 {AA} observations of NOAA active region 12723, we employed the spatially-regularised weak-field approximation (WFA) to derive the vector magnetic field in the chromosphere from Ca ii, as well as non-LTE
We characterize the K I D1 & D2 lines in order to determine whether they could complement the 850 nm window, containing the Ca II infrared triplet lines and several Zeeman sensitive photospheric lines, that was studied previously. We investigate the effect of partial redistribution on the intensity profiles, their sensitivity to changes in different atmospheric parameters, and the spatial distribution of Zeeman polarization signals employing a realistic magnetohydrodynamic simulation. The results show that these lines form in the upper photosphere at around 500 km and that they are sensitive to the line of sight velocity and magnetic field strength at heights where neither the photospheric lines nor the Ca II infrared lines are. However, at the same time, we found that their sensitivity to the temperature essentially comes from the photosphere. Then, we conclude that the K I lines provide a complement to the lines in the 850 nm window for the determination of atmospheric parameters in the upper photosphere, especially for the line of sight velocity and the magnetic field.