No Arabic abstract
Solar chromospheric fibrils, as observed in the core of strong chromospheric spectral lines, extend from photospheric field concentrations suggesting that they trace magnetic field lines. These images have been historically used as proxies of magnetic fields for many purposes. We use a Bayesian hierarchical model to analyze several tens of thousands of pixels in spectro-polarimetric chromospheric images of penumbrae and chromospheric fibrils. We compare the alignment between the field azimuth inferred from the linear polarization signals through the transverse Zeeman effect and the direction of the fibrils in the image. We conclude that, in the analyzed fields of view, fibrils are often well aligned with the magnetic field azimuth. Despite this alignment, the analysis also shows that there is a non-negligible dispersion. In penumbral filaments, we find a dispersion with a standard deviation of ~16 degrees, while this dispersion goes up to ~34 degrees in less magnetized regions.
Chromospheric umbral oscillations produce periodic brightenings in the core of some spectral lines, known as umbral flashes. They are also accompanied by fluctuations in velocity, temperature, and, according to several recent works, magnetic field. In this study, we aim to ascertain the accuracy of the magnetic field determined from
A dense forest of slender bright fibrils near a small solar active region is seen in high-quality narrowband Ca II H images from the SuFI instrument onboard the Sunrise balloon-borne solar observatory. The orientation of these slender Ca II H fibrils (SCF) overlaps with the magnetic field configuration in the low solar chromosphere derived by magnetostatic extrapolation of the photospheric field observed with Sunrise/IMaX and SDO/HMI. In addition, many observed SCFs are qualitatively aligned with small-scale loops computed from a novel inversion approach based on best-fit numerical MHD simulation. Such loops are organized in canopy-like arches over quiet areas that differ in height depending on the field strength near their roots.