Do you want to publish a course? Click here

Precision and Work Fluctuations in Gaussian Battery Charging

135   0   0.0 ( 0 )
 Added by Nicolai Friis
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

One of the most fundamental tasks in quantum thermodynamics is extracting energy from one system and subsequently storing this energy in an appropriate battery. Both of these steps, work extraction and charging, can be viewed as cyclic Hamiltonian processes acting on individual quantum systems. Interestingly, so-called passive states exist, whose energy cannot be lowered by unitary operations, but it is safe to assume that the energy of any not fully charged battery may be increased unitarily. However, unitaries raising the average energy by the same amount may differ in qualities such as their precision, fluctuations, and charging power. Moreover, some unitaries may be extremely difficult to realize in practice. It is hence of crucial importance to understand the qualities that can be expected from practically implementable transformations. Here, we consider the limitations on charging batteries when restricting to the feasibly realizable family of Gaussian unitaries. We derive optimal protocols for general unitary operations as well as for the restriction to easier implementable Gaussian unitaries. We find that practical Gaussian battery charging, while performing significantly less well than is possible in principle, still offers asymptotically vanishing relative charge variances and fluctuations.



rate research

Read More

We present a collision model for the charging of a quantum battery by identical nonequilibrium qubit units. When the units are prepared in a mixture of energy eigenstates, the energy gain in the battery can be described by a classical random walk, where both average energy and variance grow linearly with time. Conversely, when the qubits contain quantum coherence, interference effects buildup in the battery and lead to a faster spreading of the energy distribution, reminiscent of a quantum random walk. This can be exploited for faster and more efficient charging of a battery initialized in the ground state. Specifically, we show that coherent protocols can yield higher charging power than any possible incoherent strategy, demonstrating a quantum speed-up at the level of a single battery. Finally, we characterize the amount of extractable work from the battery through the notion of ergotropy.
We consider a quantum battery modeled as a set of N independent two-level quantum systems driven by a time dependent classical source. Different figures of merit, such as stored energy, time of charging and energy quantum fluctuations during the charging process, are characterized in a wide range of parameters, by means of numerical approach and suitable analytical approximation scheme. Particular emphasis is put on the role of different initial conditions, describing the preparation state of the quantum battery, as well as on the sensitivity to the functional form of the external time-dependent drive. It is shown that an optimal charging protocol, characterized by fast charging time and the absence of charging fluctuations, can be achieved starting from the ground state of each two-level system, while other pure preparation states are less efficient. Moreover, we argue that a periodic train of peaked rectangular pulses can lead to fast charging. This study aims at providing a useful theoretical background in view of future experimental solid-state implementations.
Quantum batteries are miniature energy storage devices and play a very important role in quantum thermodynamics. In recent years, quantum batteries have been extensively studied, but limited in theoretical level. Here we report the experimental realization of a quantum battery based on superconducting qubits. Our model explores dark and bright states to achieve stable and powerful charging processes, respectively. Our scheme makes use of the quantum adiabatic brachistochrone, which allows us to speed up the {battery ergotropy injection. Due to the inherent interaction of the system with its surrounding, the battery exhibits a self-discharge, which is shown to be described by a supercapacitor-like self-discharging mechanism. Our results paves the way for proposals of new superconducting circuits able to store extractable work for further usage.
From the perspective of quantum thermodynamics, realisable measurements cost work and result in measurement devices that are not perfectly correlated with the measured systems. We investigate the consequences for the estimation of work in non-equilibrium processes and for the fundamental structure of the work fluctuations when one assumes that the measurements are non-ideal. We show that obtaining work estimates and their statistical moments at finite work cost implies an imperfection of the estimates themselves: more accurate estimates incur higher costs. Our results provide a qualitative relation between the cost of obtaining information about work and the trustworthiness of this information. Moreover, we show that Jarzynskis equality can be maintained exactly at the expense of a correction that depends only on the systems energy scale, while the more general fluctuation relation due to Crooks no longer holds when the cost of the work estimation procedure is finite. We show that precise links between dissipation and irreversibility can be extended to the non-ideal situation.
We calculate the first two moments and full probability distribution of the work performed on a system of bosonic particles in a two-mode Bose-Hubbard Hamiltonian when the self-interaction term is varied instantaneously or with a finite-time ramp. In the instantaneous case, we show how the irreversible work scales differently depending on whether the system is driven to the Josephson or Fock regime of the bosonic Josephson junction. In the finite-time case, we use optimal control techniques to substantially decrease the irreversible work to negligible values. Our analysis can be implemented in present-day experiments with ultracold atoms and we show how to relate the work statistics to that of the population imbalance of the two modes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا