Do you want to publish a course? Click here

Improving the Limits of Detection of Low Background Alpha Emission Measurements

398   0   0.0 ( 0 )
 Added by Brendan McNally
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Alpha particle emission, even at extremely low levels, is a significant issue in the search for rare events (e.g., double beta decay, dark matter detection). Traditional measurement techniques require long counting times to measure low sample rates in the presence of much larger instrumental backgrounds. To address this, a commercially available instrument developed by XIA uses pulse shape analysis to discriminate alpha emissions produced by the sample from those produced by other surfaces of the instrument itself. Experience with this system has uncovered two residual sources of background: cosmogenics and radon emanation from internal components. A development program is underway to enhance the system and extend the pulse shape analysis technique further, so that these residual sources can be identified and rejected as well. In this paper, we review the theory of operation and pulse shape analysis techniques used in XIA`s alpha counter, and briefly explore data suggesting the origin of the residual background terms. We will then present our approach to enhance the system`s ability to identify and reject these terms. Finally, we will describe a prototype system that incorporates our concepts and demonstrates their feasibility.



rate research

Read More

The study of low-yield effects requires not only good quality of the original data but also puts high requirements for their processing procedures to increase the efficiency of the selection of useful events. The exploiting of the large cylindrical proportional counters electrostatic topology allows improving the extrapolation of information about the primary ionization of a multipoint event. Long-term calibration measurements with an external $^{109}$Cd-source allowed the development of a new method for analyzing the pulse shape from a sizeable proportional counter. Optimized analysis of the currents pulse shape from the electron cloud of primary ionization in the counter improved the resolution and energy calibration. As a result, the efficiency of selecting useful events was increased by 25%.
The article is devoted to a further study of the Compton camera method of passive detection of small amounts of special nuclear materials, developed by the authors in their previous work. Various cargo scenarios, detector errors, and other issues are addressed.
Characterization of a hybrid ${it telescope}$ with gas transmission detector ($Delta$E) and a solid-state stop detector (E) has been fabricated for detection of low energy $alpha$ particles between 5 to 1 MeV. The detector is developed for utilization in the study of alpha excitation function in (p.$alpha$) reaction. The gas ionization chamber, operated in axial field mode, measures the differential energy loss ($Delta$E), while the residual energies are measured by silicon detector. Particle identification is realized by implementing the $Delta$E-E technique. The optimum sensitivity of the detector as a telescope has been studied down to the lowest energy value of 0.89 MeV $alpha$-particles with a suitable combination of electric field and pressure or E/p value in the ionization region.
189 - F.J. Iguaz , J.G. Garza , F. Aznar 2015
Dark Matter experiments are recently focusing their detection techniques in low-mass WIMPs, which requires the use of light elements and low energy threshold. In this context, we present the TREX-DM experiment, a low background Micromegas-based TPC for low-mass WIMP detection. Its main goal is the operation of an active detection mass $sim$0.300 kg, with an energy threshold below 0.4 keVee and fully built with previously selected radiopure materials. This article describes the actual setup, the first results of the comissioning in Ar+2%iC$_4$H$_{10}$ at 1.2 bar and the future updates for a possible physics run at the Canfranc Underground Laboratory in 2016. A first background model is also presented, based on Geant4 simulations and a muon/electron discrimination method. In a conservative scenario, TREX-DM could be sensitive to DAMA/LIBRA and other hints of positive WIMPs signals, with some space for improvement with a neutron/electron discrimination method or the use of other light gases.
121 - F.J. Iguaz , J.G. Garza , F. Aznar 2016
Dark Matter experiments are recently focusing their detection techniques in low-mass WIMPs, which requires the use of light elements and low energy threshold. In this context, we describe the TREX-DM experiment, a low background Micromegas-based TPC for low-mass WIMP detection. Its main goal is the operation of an active detection mass $sim$0.3 kg, with an energy threshold below 0.4 keVee and fully built with previously selected radiopure materials. This work describes the commissioning of the actual setup situated in a laboratory on surface and the updates needed for a possible physics run at the Canfranc Underground Laboratory (LSC) in 2016. A preliminary background model of TREX-DM is also presented, based on a Geant4 simulation, the simulation of the detectors response and two discrimination methods: a conservative muon/electron and one based on a neutron source. Based on this background model, TREX-DM could be competitive in the search for low-mass WIMPs. In particular it could be sensitive, e.g., to the low-mass WIMP interpretation of the DAMA/LIBRA and other hints in a conservative scenario.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا