No Arabic abstract
We propose a Heisenberg-limited quantum interferometer whose input is twin optical beams from which one or more photons have been indistinguishably subtracted. Such an interferometer can yield Heisenberg-limited performance while at the same time giving a direct fringe reading, unlike for the twin-beam input of the Holland-Burnett interferometer. We propose a feasible experimental realization using a photon-number correlated source, such as non-degenerate parametric down-conversion, and perform realistic analyses of performance in the presence of loss and detector inefficiency.
Interferometry with Heisenberg limited phase resolution may play an important role in the next generation of atomic clocks, gravitational wave detectors, and in quantum information science. For experimental implementations the robustness of the phase resolution is crucial since any experimental realization will be subject to imperfections. In this article we study the robustness of phase reconstruction with two number states as input subject to fluctuations in the state preparation. We find that the phase resolution is insensitive to fluctuations in the total number of particles and robust against noise in the number difference at the input. The phase resolution depends on the uncertainty in the number difference in a universal way that has a clear physical interpretation: Fundamental noise due to the Heisenberg limit and noise due to state preparation imperfection contribute essentially independently to the total uncertainty in the phase. For number difference uncertainties less than one the first noise source is dominant and the phase resolution is essentially Heisenberg limited. For number difference uncertainties greater than one the noise due to state preparation imperfection is dominant and the phase resolution deteriorates linearly with the number difference uncertainty.
This thesis reports advances in the theory of design, characterization and simulation of multi-photon multi-channel interferometers. I advance the design of interferometers through an algorithm to realize an arbitrary discrete unitary transformation on the combined spatial and internal degrees of freedom of light. This procedure effects an arbitrary $n_{s}n_{p}times n_{s}n_{p}$ unitary matrix on the state of light in $n_{s}$ spatial and $n_{p}$ internal modes. I devise an accurate and precise procedure for characterizing any multi-port linear optical interferometer using one- and two-photon interference. Accuracy is achieved by estimating and correcting systematic errors that arise due to spatiotemporal and polarization mode mismatch. Enhanced accuracy and precision are attained by fitting experimental coincidence data to a curve simulated using measured source spectra. The efficacy of our characterization procedure is verified by numerical simulations. I develop group-theoretic methods for the analysis and simulation of linear interferometers. I devise a graph-theoretic algorithm to construct the boson realizations of the canonical SU$(n)$ basis states, which reduce the canonical subgroup chain, for arbitrary $n$. The boson realizations are employed to construct $mathcal{D}$-functions, which are the matrix elements of arbitrary irreducible representations, of SU$(n)$ in the canonical basis. I show that immanants of principal submatrices of a unitary matrix $T$ are a sum of the diagonal $mathcal{D}(Omega)$-functions of group element $Omega$ over $t$ determined by the choice of submatrix and over the irrep $(lambda)$ determined by the immanant under consideration. The algorithm for $mathrm{SU}(n)$ $mathcal{D}$-function computation and the results connecting these functions with immanants open the possibility of group-theoretic analysis and simulation of linear optics.
We present a study of optical quantum states generated by subtraction of photons from the thermal state. Some aspects of their photon number and quadrature distributions are discussed and checked experimentally. We demonstrate an original method of up to ten photon subtracted state preparation with use of just one single-photon detector. All the states where measured with use of balanced homodyne technique, and the corresponding density matrices where reconstructed. The fidelity between desired and reconstructed states exceeds 99%
Multi-photon interference reveals strictly non-classical phenomena. Its applications range from fundamental tests of quantum mechanics to photonic quantum information processing, where a significant fraction of key experiments achieved so far comes from multi-photon state manipulation. We review the progress, both theoretical and experimental, of this rapidly advancing research. The emphasis is given to the creation of photonic entanglement of various forms, tests of the completeness of quantum mechanics (in particular, violations of local realism), quantum information protocols for quantum communication (e.g., quantum teleportation, entanglement purification and quantum repeater), and quantum computation with linear optics. We shall limit the scope of our review to few photon phenomena involving measurements of discrete observables.
Two-mode interferometers, such as Michelson interferometer based on two spatial optical modes, lay the foundations for quantum metrology. Instead of exploring quantum entanglement in the two-mode interferometers, a single bosonic mode also promises a measurement precision beyond the shot-noise limit (SNL) by taking advantage of the infinite-dimensional Hilbert space of Fock states. However, the experimental demonstration still remains elusive. Here, we demonstrate a single-mode phase estimation that approaches the Heisenberg limit (HL) unconditionally. Due to the strong dispersive nonlinearity and long coherence time of a microwave cavity, quantum states of the form $left(left|0rightrangle +left|Nrightrangle right)/sqrt{2}$ are generated, manipulated and detected with high fidelities, leading to an experimental phase estimation precision scaling as $sim N^{-0.94}$. A $9.1$~$mathrm{dB}$ enhancement of the precision over the SNL at $N=12$, which is only $1.7$~$mathrm{dB}$ away from the HL, is achieved. Our experimental architecture is hardware efficient and can be combined with the quantum error correction techniques to fight against decoherence, thus promises the quantum enhanced sensing in practical applications.