No Arabic abstract
The Bell basis is a distinctive set of maximally entangled two-particle quantum states that forms the foundation for many quantum protocols such as teleportation, dense coding and entanglement swapping. While the generation, manipulation, and measurement of two-level quantum states is well understood, the same is not true in higher dimensions. Here we present the experimental generation of a complete set of Bell states in a four-dimensional Hilbert space, comprising of 16 orthogonal entangled Bell-like states encoded in the orbital angular momentum of photons. The states are created by the application of generalized high-dimensional Pauli gates on an initial entangled state. Our results pave the way for the application of high-dimensional quantum states in complex quantum protocols such as quantum dense coding.
The Bell basis, a set of maximally entangled biphoton state, is a critical prerequisite towards quantum information processing, and many quantum applications have highlighted the requirement for the manipulation of high-dimensional Bell basis. While the Bell states can be created by using ingenious single-photon quantum gates, its implementation complexity in higher dimensions is significantly increased. Here we present an elaborate approach to show that the adaptive pump modulation enable the efficient preparation of Bell basis in arbitrary-dimensional Hilbert space. A complete set of four-dimensional orbital angular momentum Bell states are experimentally created, yielding high fidelities for certifying the entanglement dimensionality. Our strategy can be simply generalized to prepare more complex forms of quantum states even exploiting other physical degrees of freedom. Also, it can facilitate the use of high-dimensional entanglement in a variety of quantum protocols, in particular those requiring quantum dense coding.
We give the complete list of 175 facet Bell inequalities for the case where Alice and Bob each choose their measurements from a set of four binary outcome measurements. For each inequality we compute the maximum quantum violation for qubits, the resistance to noise, and the minimal detection efficiency required for closing the detection loophole with maximally entangled qubit states, in the case where both detectors have the same efficiency (symmetric case).
We show that paradoxical consequences of violations of Bells inequality are induced by the use of an unsuitable probabilistic description for the EPR-Bohm-Bell experiment. The conventional description (due to Bell) is based on a combination of statistical data collected for different settings of polarization beam splitters (PBSs). In fact, such data consists of some conditional probabilities which only partially define a probability space. Ignoring this conditioning leads to apparent contradictions in the classical probabilistic model (due to Kolmogorov). We show how to make a completely consistent probabilistic model by taking into account the probabilities of selecting the settings of the PBSs. Our model matches both the experimental data and is consistent with classical probability theory.
We experimentally demonstrate, using qubits encoded in photon polarization, that if two parties share a single reference direction and use locally orthogonal measurements they will always violate a Bell inequality, up to experimental deficiencies. This contrasts with the standard view of Bell inequalities in which the parties need to share a complete reference frame for their measurements. Furthermore, we experimentally demonstrate that as the reference direction degrades the probability of violating a Bell inequality decreases smoothly to (39.7 +/- 0.1) % in the limiting case that the observers do not share a reference direction. This result promises simplified distribution of entanglement between separated parties, with applications in fundamental investigations of quantum physics and tasks such as quantum communication.
We find at least 527 new four-dimensional Fano manifolds, each of which is a complete intersection in a smooth toric Fano manifold.