Do you want to publish a course? Click here

Divide and Conquer: Variable Set Separation in Hybrid Systems Reachability Analysis

99   0   0.0 ( 0 )
 Added by EPTCS
 Publication date 2017
and research's language is English
 Authors Stefan Schupp




Ask ChatGPT about the research

In this paper we propose an improvement for flowpipe-construction-based reachability analysis techniques for hybrid systems. Such methods apply iterative successor computations to pave the reachable region of the state space by state sets in an over-approximative manner. As the computational costs steeply increase with the dimension, in this work we analyse the possibilities for improving scalability by dividing the search space in sub-spaces and execute reachability computations in the sub-spaces instead of the global space. We formalise such an algorithm and provide experimental evaluations to compare the efficiency as well as the precision of our sub-space search to the original search in the global space.



rate research

Read More

Reachability analysis aims at identifying states reachable by a system within a given time horizon. This task is known to be computationally expensive for linear hybrid systems. Reachability analysis works by iteratively applying continuous and discrete post operators to compute states reachable according to continuous and discrete dynamics, respectively. In this paper, we enhance both of these operators and make sure that most of the involved computations are performed in low-dimensional state space. In particular, we improve the continuous-post operator by performing computations in high-dimensional state space only for time intervals relevant for the subsequent application of the discrete-post operator. Furthermore, the new discrete-post operator performs low-dimensional computations by leveraging the structure of the guard and assignment of a considered transition. We illustrate the potential of our approach on a number of challenging benchmarks.
Autonomous cyber-physical systems (CPS) rely on the correct operation of numerous components, with state-of-the-art methods relying on machine learning (ML) and artificial intelligence (AI) components in various stages of sensing and control. This paper develops methods for estimating the reachable set and verifying safety properties of dynamical systems under control of neural network-based controllers that may be implemented in embedded software. The neural network controllers we consider are feedforward neural networks called multilayer perceptrons (MLP) with general activation functions. As such feedforward networks are memoryless, they may be abstractly represented as mathematical functions, and the reachability analysis of the network amounts to range (image) estimation of this function provided a set of inputs. By discretizing the input set of the MLP into a finite number of hyper-rectangular cells, our approach develops a linear programming (LP) based algorithm for over-approximating the output set of the MLP with its input set as a union of hyper-rectangular cells. Combining the over-approximation for the output set of an MLP based controller and reachable set computation routines for ordinary difference/differential equation (ODE) models, an algorithm is developed to estimate the reachable set of the closed-loop system. Finally, safety verification for neural network control systems can be performed by checking the existence of intersections between the estimated reachable set and unsafe regions. The approach is implemented in a computational software prototype and evaluated on numerical examples.
We consider the learning of algorithmic tasks by mere observation of input-output pairs. Rather than studying this as a black-box discrete regression problem with no assumption whatsoever on the input-output mapping, we concentrate on tasks that are amenable to the principle of divide and conquer, and study what are its implications in terms of learning. This principle creates a powerful inductive bias that we leverage with neural architectures that are defined recursively and dynamically, by learning two scale-invariant atomic operations: how to split a given input into smaller sets, and how to merge two partially solved tasks into a larger partial solution. Our model can be trained in weakly supervised environments, namely by just observing input-output pairs, and in even weaker environments, using a non-differentiable reward signal. Moreover, thanks to the dynamic aspect of our architecture, we can incorporate the computational complexity as a regularization term that can be optimized by backpropagation. We demonstrate the flexibility and efficiency of the Divide-and-Conquer Network on several combinatorial and geometric tasks: convex hull, clustering, knapsack and euclidean TSP. Thanks to the dynamic programming nature of our model, we show significant improvements in terms of generalization error and computational complexity.
This article presents a new set representation named the hybrid zonotope. The hybrid zonotope is shown to be equivalent to $2^N$ constrained zonotopes through the addition of $N$ binary zonotope factors and is well-suited for the analysis of hybrid systems with both continuous and discrete states and inputs. The major contribution of this manuscript is a closed-form solution for exact forward reachable sets of linear mixed logical dynamical systems. This is given by a simple identity and does not require solving any optimization programs or taking set approximations. The proposed approach captures the worst-case exponential growth in the number of convex sets required to represent the nonconvex reachable set of a hybrid system while exhibiting only linear growth in the complexity of the hybrid zonotope set representation. To reduce both set representation complexity and the computational burden of reachability analysis, a binary tree is used to store only the combinations of binary factors of the hybrid zonotope that map to nonempty convex sets. The proposed approach is applied to an established benchmark example where the exact reachable set of a discrete-time hybrid system with six continuous and two discrete states is given by a single hybrid zonotope equivalent to the union of 657 constrained zonotopes, and is represented using only 283 continuous factors, 29 binary factors, and 177 linear equality constraints. Furthermore, the hybrid zonotope is closed under linear mappings, Minkowski sums, generalized intersections, and halfspace intersections.
In data containing heterogeneous subpopulations, classification performance benefits from incorporating the knowledge of cluster structure in the classifier. Previous methods for such combined clustering and classification are either 1) classifier-specific and not generic, or 2) independently perform clustering and classifier training, which may not form clusters that can potentially benefit classifier performance. The question of how to perform clustering to improve the performance of classifiers trained on the clusters has received scant attention in previous literature, despite its importance in several real-world applications. In this paper, we design a simple and efficient classification algorithm called Clustering Aware Classification (CAC), to find clusters that are well suited for being used as training datasets by classifiers for each underlying subpopulation. Our experiments on synthetic and real benchmark datasets demonstrate the efficacy of CAC over previous methods for combined clustering and classification.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا