No Arabic abstract
This article presents a new set representation named the hybrid zonotope. The hybrid zonotope is shown to be equivalent to $2^N$ constrained zonotopes through the addition of $N$ binary zonotope factors and is well-suited for the analysis of hybrid systems with both continuous and discrete states and inputs. The major contribution of this manuscript is a closed-form solution for exact forward reachable sets of linear mixed logical dynamical systems. This is given by a simple identity and does not require solving any optimization programs or taking set approximations. The proposed approach captures the worst-case exponential growth in the number of convex sets required to represent the nonconvex reachable set of a hybrid system while exhibiting only linear growth in the complexity of the hybrid zonotope set representation. To reduce both set representation complexity and the computational burden of reachability analysis, a binary tree is used to store only the combinations of binary factors of the hybrid zonotope that map to nonempty convex sets. The proposed approach is applied to an established benchmark example where the exact reachable set of a discrete-time hybrid system with six continuous and two discrete states is given by a single hybrid zonotope equivalent to the union of 657 constrained zonotopes, and is represented using only 283 continuous factors, 29 binary factors, and 177 linear equality constraints. Furthermore, the hybrid zonotope is closed under linear mappings, Minkowski sums, generalized intersections, and halfspace intersections.
Ellipsoids are a common representation for reachability analysis because they are closed under affine maps and allow conservative approximation of Minkowski sums; this enables one to incorporate uncertainty and linearization error in a dynamical system by exapnding the size of the reachable set. Zonotopes, a type of symmetric, convex polytope, are similarly frequently used due to efficient numerical implementation of affine maps and exact Minkowski sums. Both of these representations also enable efficient, convex collision detection for fault detection or formal verification tasks, wherein one checks if the reachable set of a system collides (i.e., intersects) with an unsafe set. However, both representations often result in conservative representations for reachable sets of arbitrary systems, and neither is closed under intersection. Recently, constrained zonotopes and constrained polynomial zonotopes have been shown to overcome some of these conservatism challenges, and are closed under intersection. However, constrained zonotopes can not represent shapes with smooth boundaries such as ellipsoids, and constrained polynomial zonotopes can require solving a non-convex program for collision checking (i.e., fault detection). This paper introduces ellipsotopes, a set representation that is closed under affine maps, Minkowski sums, and intersections. Ellipsotopes combine the advantages of ellipsoids and zonotopes, and enable convex collision checking at the expense of more conservative reachable sets than constrained polynomial zonotopes. The utility of this representation is demonstrated on several examples.
This paper presents methods for using zonotopes and constrained zonotopes to improve the practicality of a wide variety of set-based operations commonly used in control theory. The proposed methods extend the use of constrained zonotopes to represent sets resulting from operations including halfspace intersections, convex hulls, robust positively invariant sets, and Pontryagin differences. Order reduction techniques are also presented that provide lower-complexity inner-approximations of zonotopes and constrained zonotopes. Numerical examples are used to demonstrate the efficacy and computational advantages of using zonotope-based set representations for dynamic system analysis and control.
Reachable set computation is an important technique for the verification of safety properties of dynamical systems. In this paper, we investigate reachable set computation for discrete nonlinear systems based on parallelotope bundles. The algorithm relies on computing an upper bound on the supremum of a nonlinear function over a rectangular domain, which has been traditionally done using Bernstein polynomials. We strive to remove the manual step of parallelotope template selection to make the method fully automatic. Furthermore, we show that changing templates dynamically during computations cans improve accuracy. To this end, we investigate two techniques for generating the template directions. The first technique approximates the dynamics as a linear transformation and generates templates using this linear transformation. The second technique uses Principal Component Analysis (PCA) of sample trajectories for generating templates. We have implemented our approach in a Python-based tool called Kaa and improve its performance by two main enhancements. The tool is modular and use two types of global optimization solvers, the first using Bernstein polynomials and the second using NASAs Kodiak nonlinear optimization library. Second, we leverage the natural parallelism of the reachability algorithm and parallelize the Kaa implementation. We demonstrate the improved accuracy of our approach on several standard nonlinear benchmark systems.
Given a stochastic dynamical system modelled via stochastic differential equations (SDEs), we evaluate the safety of the system through characterisations of its exit time moments. We lift the (possibly nonlinear) dynamics into the space of the occupation and exit measures to obtain a set of linear evolution equations which depend on the infinitesimal generator of the SDE. Coupled with appropriate semidefinite positive matrix constraints, this yields a moment-based approach for the computation of exit time moments of SDEs with polynomial drift and diffusion dynamics. To extend the capability of the moment approach, we propose a state augmentation method which allows us to generate the evolution equations for a broader class of nonlinear stochastic systems and apply the moment method to previously unsupported dynamics. In particular, we show a general augmentation strategy for sinusoidal dynamics which can be found in most physical systems. We employ the methodology on an Ornstein-Uhlenbeck process and stochastic spring-mass-damper model to characterise their safety via their expected exit times and show the additional exit distribution insights that are afforded through higher order moments.
This paper considers a constrained discrete-time linear system subject to actuation attacks. The attacks are modelled as false data injections to the system, such that the total input (control input plus injection) satisfies hard input constraints. We establish a sufficient condition under which it is not possible to maintain the states of the system within a compact state constraint set for all possible realizations of the actuation attack. The developed condition is a simple function of the spectral radius of the system, the relative sizes of the input and state constraint sets, and the proportion of the input constraint set allowed to the attacker.