Do you want to publish a course? Click here

Emergence of Dirac-like bands in the monolayer limit of epitaxial Ge films on Au(111)

127   0   0.0 ( 0 )
 Added by Timur Kim
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

After the discovery of Dirac fermions in graphene, it has become a natural question to ask whether it is possible to realize Dirac fermions in other two-dimensional (2D) materials as well. In this work, we report the discovery of multiple Dirac-like electronic bands in ultrathin Ge films grown on Au(111) by angle-resolved photoelectron spectroscopy. By tuning the thickness of the films, we are able to observe the evolution of their electronic structure when passing through the monolayer limit. Our discovery may signify the synthesis of germanene, a 2D honeycomb structure made of Ge, which is a promising platform for exploring exotic topological phenomena and enabling potential applications.



rate research

Read More

Monolayer van der Waals (vdW) magnets provide an exciting opportunity for exploring two-dimensional (2D) magnetism for scientific and technological advances, but the intrinsic ferromagnetism has only been observed at low temperatures. Here, we report the observation of room temperature ferromagnetism in manganese selenide (MnSe$_x$) films grown by molecular beam epitaxy (MBE). Magnetic and structural characterization provides strong evidence that in the monolayer limit, the ferromagnetism originates from a vdW manganese diselenide (MnSe$_2$) monolayer, while for thicker films it could originate from a combination of vdW MnSe$_2$ and/or interfacial magnetism of $alpha$-MnSe(111). Magnetization measurements of monolayer MnSe$_x$ films on GaSe and SnSe$_2$ epilayers show ferromagnetic ordering with large saturation magnetization of ~ 4 Bohr magnetons per Mn, which is consistent with density functional theory calculations predicting ferromagnetism in monolayer 1T-MnSe$_2$. Growing MnSe$_x$ films on GaSe up to high thickness (~ 40 nm) produces $alpha$-MnSe(111), and an enhanced magnetic moment (~ 2x) compared to the monolayer MnSe$_x$ samples. Detailed structural characterization by scanning transmission electron microscopy (STEM), scanning tunneling microscopy (STM), and reflection high energy electron diffraction (RHEED) reveal an abrupt and clean interface between GaSe(0001) and $alpha$-MnSe(111). In particular, the structure measured by STEM is consistent with the presence of a MnSe$_2$ monolayer at the interface. These results hold promise for potential applications in energy efficient information storage and processing.
We have performed electron energy-loss spectroscopy (EELS) studies of Ni(111), graphene/Ni(111), and the graphene/Au/Ni(111) intercalation-like system at different primary electron energies. A reduced parabolic dispersion of the pi plasmon excitation for the graphene/Ni(111) system is observed compared to that for bulk pristine and intercalated graphite and to linear for free graphene, reflecting the strong changes in the electronic structure of graphene on Ni(111) relative to free-standing graphene. We have also found that intercalation of gold underneath a graphene layer on Ni(111) leads to the disappearance of the EELS spectral features which are characteristic of the graphene/Ni(111) interface. At the same time the shift of the pi plasmon to the lower loss-energies is observed, indicating the transition of initial system of strongly bonded graphene on Ni(111) to a quasi free-standing-like graphene state.
107 - Kai Zhu , Lin Wu , Xinxin Gong 2014
Quantum transport measurements including the Altshuler-Aronov-Spivak (AAS) and Aharonov-Bohm (AB) effects, universal conductance fluctuations (UCF), and weak anti-localization (WAL) have been carried out on epitaxial Bi thin films ($10-70$ bilayers) on Si(111). The results show that while the film interior is insulating all six surfaces of the Bi thin films are robustly metallic. We propose that these properties are the manifestation of a novel phenomenon, namely, a topologically trivial bulk system can become topologically non-trivial when it is made into a thin film. We stress that whats observed here is entirely different from the predicted 2D topological insulating state in a single bilayer Bi where only the four side surfaces should possess topologically protected gapless states.
73 - Haoyu Dong , Le Lei , Shuya Xing 2021
Transition-metal chalcogenides (TMCs) materials have attracted increasing interest both for fundamental research and industrial applications. Among all these materials, two-dimensional (2D) compounds with honeycomb-like structure possess exotic electronic structures. Here, we report a systematic study of TMC monolayer AgTe fabricated by direct depositing Te on the surface of Ag(111) and annealing. Few intrinsic defects are observed and studied by scanning tunneling microscopy, indicating that there are two kinds of AgTe domains and they can form gliding twin-boundary. Then, the monolayer AgTe can serve as the template for the following growth of Te film. Meanwhile, some Te atoms are observed in the form of chains on the top of the bottom Te film. Our findings in this work might provide insightful guide for the epitaxial growth of 2D materials for study of novel physical properties and for future quantum devices.
Recent experiments have found that monolayer 1H-TaS2 grown on Au(111) lacks the charge density wave (CDW) instability exhibited by bulk 2H-TaS2. Additionally, angle-resolved photoemission spectroscopy measurements suggest that the monolayer becomes strongly electron doped by the substrate. While density functional theory (DFT) calculations have shown that electron doping can suppress the CDW instability in monolayer 1H-TaS2, it has been suggested that the actual charge transfer from the substrate may be much smaller than the apparent doping deduced from photoemission data. We present DFT calculations of monolayer 1H-TaS2 on Au(111) to explore substrate effects beyond doping. We find that the CDW instability is suppressed primarily by strong S-Au interactions rather than by doping. The S-Au interaction results in a structural distortion of the TaS2 monolayer characterized by both lateral and out-of-plane atomic displacements and a 7 x 7 periodicity dictated by the commensurate interface with Au. Simulated STM images of this 7 x 7 distorted structure are consistent with experimental STM images. In contrast, we find a robust 3 x 3 CDW phase in monolayer 1H-TaS2 on a graphene substrate with which there is minimal interaction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا