No Arabic abstract
In this paper we investigate the so called phantom barrier crossing issue in a cosmological model based in the scalar-tensor theory with non-minimal derivative coupling to the Einsteins tensor. Special attention will be paid to the physical bounds on the squared sound speed. The numeric results are geometrically illustrated by means of a qualitative procedure of analysis that is based on the mapping of the orbits in the phase plane onto the surfaces that represent physical quantities in the extended phase space, that is: the phase plane complemented with an additional dimension relative to the given physical parameter. We find that the cosmological model based in the non-minimal derivative coupling theory -- this includes both the quintessence and the pure derivative coupling cases -- has serious causality problems related with superluminal propagation of the scalar and tensor perturbations. Even more disturbing is the finding that, despite that the underlying theory is free of the Ostrogradsky instability, the corresponding cosmological model is plagued by the Laplacian (classical) instability related with negative squared sound speed. This instability leads to an uncontrollable growth of the energy density of the perturbations that is inversely proportional to their wavelength. We show that independent of the self-interaction potential, for the positive coupling the tensor perturbations propagate superluminally, while for the negative coupling a Laplacian instability arises. This latter instability invalidates the possibility for the model to describe the primordial inflation.
The predictions of standard Higgs inflation in the framework of the metric formalism yield a tensor-to-scalar ratio $r sim 10^{-3}$ which lies well within the expected accuracy of near-future experiments $ sim 10^{-4}$. When the Palatini formalism is employed, the predicted values of $r$ get highly-suppressed $rsim 10^{-12}$ and consequently a possible non-detection of primordial tensor fluctuations will rule out only the metric variant of the model. On the other hand, the extremely small values predicted for $r$ by the Palatini approach constitute contact with observations a hopeless task for the foreseeable future. In this work, we propose a way to remedy this issue by extending the action with the inclusion of a generalized non-minimal derivative coupling term between the inflaton and the Einstein tensor of the form $m^{-2}(phi) G_{mu u} abla^{mu}phi abla^{ u}phi$. We find that with such a modification, the Palatini predictions can become comparable with the ones obtained in the metric formalism, thus providing ample room for the model to be in contact with observations in the near future.
We extend the basic formalism of mimetic-metric-torsion gravity theory, in a way that the mimetic scalar field can manifest itself geometrically as the source of not only the trace mode of torsion, but also its axial (or, pseudo-trace) mode. Specifically, we consider the mimetic field to be (i) coupled explicitly to the well-known Holst extension of the Riemann-Cartan action, and (ii) identified with the square of the associated Barbero-Immirzi field, which is presumed to be a pseudo-scalar. The conformal symmetry originally prevalent in the theory would still hold, as the associated Cartan transformations do not affect the torsion pseudo-trace, and hence the Holst term. Demanding the theory to preserve the spatial parity symmetry as well, we focus on a geometric unification of the cosmological dark sector, and show that a super-accelerating regime in the course of evolution of the universe is always feasible. From the observational perspective, assuming the cosmological evolution profile to be very close to that for $L$CDM, we further show that there could be a smooth crossing of the so-called phantom barrier at a low red-shift, however for a very restricted parametric domain. The extent of the super-acceleration have subsequently been ascertained by examining the evolution of the relevant torsion parameters.
We derive the reconstruction formulae for the inflation model with the non-minimal derivative coupling term. If reconstructing the potential from the tensor-to-scalar ratio, we could obtain the potential without using the high friction limit. As an example, we reconstruct the potential from the parametrization $r=8alpha/(N+beta)^{gamma}$, which is a general form of the $alpha$-attractor. The reconstructed potential has the same asymptotic behavior as the T- and E-model if we choose $gamma=2$ and $alphall1$. We also discuss the constraints from the reheating phase preceding the radiation domination by assuming the parameter $w_{re}$ of state equation during reheating is a constant. The scale of big-bang nucleosynthesis could put a up limit on $n_s$ if $w_{re}=2/3$ and a low limit on $n_s$ if $w_{re}=1/6$.
In this paper, we study the impact of non-trivial sound on the evolution of cosmological complexity in inflationary period. The vacuum state of curvature perturbation could be treated as squeezed states with two modes, characterized by the two most essential parameters: angle parameter $phi_k$ and squeezing parameter $r_k$. Through $Schrddot{o}dinger$ equation, one can obtain the corresponding evolution equation of $phi_k$ and $r_k$. Subsequently, the quantum circuit complexity between a squeezed vacuum state and squeezed states are evaluated in scalar curvature perturbation with a type of non-trivial sound speed. Our results reveal that the evolution of complexity at early times shows the rapid solution comparing with $c_S=1$, in which we implement the resonant sound speed with various values of $xi$. In these cases, it shows that the scrambling time will be lagged with non-vanishing $xi$. Further, our methodology sheds a new way of distinguishing various inflationary models.
We derive the general formulae for the the scalar and tensor spectral tilts to the second order for the inflationary models with non-minimally derivative coupling without taking the high friction limit. The non-minimally kinetic coupling to Einstein tensor brings the energy scale in the inflationary models down to be sub-Planckian. In the high friction limit, the Lyth bound is modified with an extra suppression factor, so that the field excursion of the inflaton is sub-Planckian. The inflationary models with non-minimally derivative coupling are more consistent with observations in the high friction limit. In particular, with the help of the non-minimally derivative coupling, the quartic power law potential is consistent with the observational constraint at 95% CL.