Do you want to publish a course? Click here

Dynamic Feedback for Consensus of Networked Lagrangian Systems

410   0   0.0 ( 0 )
 Added by Hanlei Wang
 Publication date 2017
and research's language is English
 Authors Hanlei Wang




Ask ChatGPT about the research

This paper investigates the consensus problem of multiple uncertain Lagrangian systems. Due to the discontinuity resulted from the switching topology, achieving consensus in the context of uncertain Lagrangian systems is challenging. We propose a new adaptive controller based on dynamic feedback to resolve this problem and additionally propose a new analysis tool for rigorously demonstrating the stability and convergence of the networked systems. The new introduced analysis tool is referred to as uniform integral-L_p stability, which is motivated for addressing integral-input-output properties of linear time-varying systems. It is then shown that the consensus errors between the systems converge to zero so long as the union of the graphs contains a directed spanning tree. It is also shown that the proposed controller enjoys the robustness with respect to constant communication delays. The performance of the proposed adaptive controllers is shown by numerical simulations.



rate research

Read More

105 - Hanlei Wang , Yongchun Xie 2017
In this paper, we investigate the task-space consensus problem for multiple robotic systems with both the uncertain kinematics and dynamics and address two main issues, i.e., the separation of the kinematic and dynamic loops in the case of no task-space velocity measurement and the quantification of the manipulability of the system. We propose an observer-based adaptive controller to achieve the manipulable consensus without relying on the measurement of task-space velocities, and also formalize the concept of manipulability to quantify the degree of adjustability of the consensus value. The proposed adaptive controller employs a new distributed observer that does not rely on the joint velocity and a new kinematic parameter adaptation law with a distributed adaptive kinematic regressor matrix that is driven by both the observation and consensus errors. In addition, it is shown that the proposed controller has the separation property, which yields an adaptive kinematic controller that is applicable to most industrial/commercial robots. The performance of the proposed observer-based adaptive schemes is shown by numerical simulations.
This paper analyzes distributed control protocols for first- and second-order networked dynamical systems. We propose a class of nonlinear consensus controllers where the input of each agent can be written as a product of a nonlinear gain, and a sum of nonlinear interaction functions. By using integral Lyapunov functions, we prove the stability of the proposed control protocols, and explicitly characterize the equilibrium set. We also propose a distributed proportional-integral (PI) controller for networked dynamical systems. The PI controllers successfully attenuate constant disturbances in the network. We prove that agents with single-integrator dynamics are stable for any integral gain, and give an explicit tight upper bound on the integral gain for when the system is stable for agents with double-integrator dynamics. Throughout the paper we highlight some possible applications of the proposed controllers by realistic simulations of autonomous satellites, power systems and building temperature control.
In this paper, we consider the state controllability of networked systems, where the network topology is directed and weighted and the nodes are higher-dimensional linear time-invariant (LTI) dynamical systems. We investigate how the network topology, the node-system dynamics, the external control inputs, and the inner interactions affect the controllability of a networked system, and show that for a general networked multi-input/multi-output (MIMO) system: 1) the controllability of the overall network is an integrated result of the aforementioned relevant factors, which cannot be decoupled into the controllability of individual node-systems and the properties solely determined by the network topology, quite different from the familiar notion of consensus or formation controllability; 2) if the network topology is uncontrollable by external inputs, then the networked system with identical nodes will be uncontrollable, even if it is structurally controllable; 3) with a controllable network topology, controllability and observability of the nodes together are necessary for the controllability of the networked systems under some mild conditions, but nevertheless they are not sufficient. For a networked system with single-input/single-output (SISO) LTI nodes, we present precise necessary and sufficient conditions for the controllability of a general network topology.
This paper provides a protocol to address the robust output feedback consensus problem for networked heterogeneous nonlinear negative-imaginary (NI) systems with free body dynamics. We extend the definition of nonlinear NI systems to allow for systems with free body motion. A new stability result is developed for the interconnection of a nonlinear NI system and a nonlinear output strictly negative-imaginary (OSNI) system. Also, a class of networked nonlinear OSNI controllers is proposed to achieve output feedback consensus for heterogeneous networked nonlinear NI systems. We show that in this control framework, the system outputs converge to the same limit trajectory. This consensus protocol is illustrated by a numerical example.
In many large systems, such as those encountered in biology or economics, the dynamics are nonlinear and are only known very coarsely. It is often the case, however, that the signs (excitation or inhibition) of individual interactions are known. This paper extends to nonlinear systems the classical criteria of linear sign stability introduced in the 70s, yielding simple sufficient conditions to determine stability using only the sign patterns of the interactions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا