Do you want to publish a course? Click here

Task-Space Consensus of Networked Robotic Systems: Separation and Manipulability

106   0   0.0 ( 0 )
 Added by Hanlei Wang
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

In this paper, we investigate the task-space consensus problem for multiple robotic systems with both the uncertain kinematics and dynamics and address two main issues, i.e., the separation of the kinematic and dynamic loops in the case of no task-space velocity measurement and the quantification of the manipulability of the system. We propose an observer-based adaptive controller to achieve the manipulable consensus without relying on the measurement of task-space velocities, and also formalize the concept of manipulability to quantify the degree of adjustability of the consensus value. The proposed adaptive controller employs a new distributed observer that does not rely on the joint velocity and a new kinematic parameter adaptation law with a distributed adaptive kinematic regressor matrix that is driven by both the observation and consensus errors. In addition, it is shown that the proposed controller has the separation property, which yields an adaptive kinematic controller that is applicable to most industrial/commercial robots. The performance of the proposed observer-based adaptive schemes is shown by numerical simulations.



rate research

Read More

409 - Hanlei Wang 2017
This paper investigates the consensus problem of multiple uncertain Lagrangian systems. Due to the discontinuity resulted from the switching topology, achieving consensus in the context of uncertain Lagrangian systems is challenging. We propose a new adaptive controller based on dynamic feedback to resolve this problem and additionally propose a new analysis tool for rigorously demonstrating the stability and convergence of the networked systems. The new introduced analysis tool is referred to as uniform integral-L_p stability, which is motivated for addressing integral-input-output properties of linear time-varying systems. It is then shown that the consensus errors between the systems converge to zero so long as the union of the graphs contains a directed spanning tree. It is also shown that the proposed controller enjoys the robustness with respect to constant communication delays. The performance of the proposed adaptive controllers is shown by numerical simulations.
61 - Hanlei Wang 2018
This paper investigates manipulability of interactive Lagrangian systems with parametric uncertainty and communication/sensing constraints. Two standard examples are teleoperation with a master-slave system and teaching operation of robots. We here systematically formulate the concept of infinite manipulability for general dynamical systems, and investigate how such a unified motivation yields a design paradigm towards guaranteeing the infinite manipulability of interactive dynamical systems and in particular facilitates the design and analysis of nonlinear adaptive controllers for interactive Lagrangian systems. Specifically, based on a new class of dynamic feedback, we propose adaptive controllers that achieve both the infinite manipulability of the controlled Lagrangian systems and the robustness with respect to the communication/sensing constraints, mainly owing to the resultant dynamic-cascade framework. The proposed paradigm yields the desirable balance between network coupling requirements and controlled dynamics of human-system interaction. We also show that a special case of our main result resolves the longstanding nonlinear bilateral teleoperation problem with arbitrary unknown time-varying delay. Simulation results show the performance of the interactive robotic systems under the proposed adaptive controllers.
In this paper, we consider the state controllability of networked systems, where the network topology is directed and weighted and the nodes are higher-dimensional linear time-invariant (LTI) dynamical systems. We investigate how the network topology, the node-system dynamics, the external control inputs, and the inner interactions affect the controllability of a networked system, and show that for a general networked multi-input/multi-output (MIMO) system: 1) the controllability of the overall network is an integrated result of the aforementioned relevant factors, which cannot be decoupled into the controllability of individual node-systems and the properties solely determined by the network topology, quite different from the familiar notion of consensus or formation controllability; 2) if the network topology is uncontrollable by external inputs, then the networked system with identical nodes will be uncontrollable, even if it is structurally controllable; 3) with a controllable network topology, controllability and observability of the nodes together are necessary for the controllability of the networked systems under some mild conditions, but nevertheless they are not sufficient. For a networked system with single-input/single-output (SISO) LTI nodes, we present precise necessary and sufficient conditions for the controllability of a general network topology.
Today, even the most compute-and-power constrained robots can measure complex, high data-rate video and LIDAR sensory streams. Often, such robots, ranging from low-power drones to space and subterranean rovers, need to transmit high-bitrate sensory data to a remote compute server if they are uncertain or cannot scalably run complex perception or mapping tasks locally. However, todays representations for sensory data are mostly designed for human, not robotic, perception and thus often waste precious compute or wireless network resources to transmit unimportant parts of a scene that are unnecessary for a high-level robotic task. This paper presents an algorithm to learn task-relevant representations of sensory data that are co-designed with a pre-trained robotic perception models ultimate objective. Our algorithm aggressively compresses robotic sensory data by up to 11x more than competing methods. Further, it achieves high accuracy and robust generalization on diverse tasks including Mars terrain classification with low-power deep learning accelerators, neural motion planning, and environmental timeseries classification.
In many large systems, such as those encountered in biology or economics, the dynamics are nonlinear and are only known very coarsely. It is often the case, however, that the signs (excitation or inhibition) of individual interactions are known. This paper extends to nonlinear systems the classical criteria of linear sign stability introduced in the 70s, yielding simple sufficient conditions to determine stability using only the sign patterns of the interactions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا