Do you want to publish a course? Click here

Bounded pregeometries and pairs of fields

71   0   0.0 ( 0 )
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

A definable set in a pair (K, k) of algebraically closed fields is co-analyzable relative to the subfield k of the pair if and only if it is almost internal to k. To prove this and some related results for tame pairs of real closed fields we introduce a certain kind of bounded pregeometry for such pairs.



rate research

Read More

We define the bounded jump of A by A^b = {x | Exists i <= x [phi_i (x) converges and Phi_x^[A|phi_i(x)](x) converges} and let A^[nb] denote the n-th bounded jump. We demonstrate several properties of the bounded jump, including that it is strictly increasing and order preserving on the bounded Turing (bT) degrees (also known as the weak truth-table degrees). We show that the bounded jump is related to the Ershov hierarchy. Indeed, for n > 1 we have X <=_[bT] 0^[nb] iff X is omega^n-c.e. iff X <=_1 0^[nb], extending the classical result that X <=_[bT] 0 iff X is omega-c.e. Finally, we prove that the analogue of Shoenfield inversion holds for the bounded jump on the bounded Turing degrees. That is, for every X such that 0^b <=_[bT] X <=_[bT] 0^[2b], there is a Y <=_[bT] 0^b such that Y^b =_[bT] X.
We analyze the strength of Hellys selection theorem HST, which is the most important compactness theorem on the space of functions of bounded variation. For this we utilize a new representation of this space intermediate between $L_1$ and the Sobolev space W1,1, compatible with the, so called, weak* topology. We obtain that HST is instance-wise equivalent to the Bolzano-Weierstrass principle over RCA0. With this HST is equivalent to ACA0 over RCA0. A similar classification is obtained in the Weihrauch lattice.
We generalise the main theorems from the paper The Borel cardinality of Lascar strong types by I. Kaplan, B. Miller and P. Simon to a wider class of bounded invariant equivalence relations. We apply them to describe relationships between fundamental properties of bounded invariant equivalence relations (such as smoothness or type-definability) which also requires finding a series of counterexamples. Finally, we apply the generalisation mentioned above to prove a conjecture from a paper by the first author and J. Gismatullin, showing that the key technical assumption of the main theorem (concerning connected components in definable group extensions) from that paper is not only sufficient but also necessary to get the conclusion.
109 - Tomasz Rzepecki 2018
We study strong types and Galois groups in model theory from a topological and descriptive-set-theoretical point of view, leaning heavily on topological dynamical tools. More precisely, we give an abstract (not model theoretic) treatment of problems related to cardinality and Borel cardinality of strong types, quotients of definable groups and related objecets, generalising (and often improving) essentially all hitherto known results in this area. In particular, we show that under reasonable assumptions, strong type spaces are locally quotients of compact Polish groups. It follows that they are smooth if and only if they are type-definable, and that a quotient of a type-definable group by an analytic subgroup is either finite or of cardinality at least continuum.
We prove that any proof of a $forall Sigma^0_2$ sentence in the theory $mathrm{WKL}_0 + mathrm{RT}^2_2$ can be translated into a proof in $mathrm{RCA}_0$ at the cost of a polynomial increase in size. In fact, the proof in $mathrm{RCA}_0$ can be found by a polynomial-time algorithm. On the other hand, $mathrm{RT}^2_2$ has non-elementary speedup over the weaker base theory $mathrm{RCA}^*_0$ for proofs of $Sigma_1$ sentences. We also show that for $n ge 0$, proofs of $Pi_{n+2}$ sentences in $mathrm{B}Sigma_{n+1}+exp$ can be translated into proofs in $mathrm{I}Sigma_{n} + exp$ at polynomial cost. Moreover, the $Pi_{n+2}$-conservativity of $mathrm{B}Sigma_{n+1} + exp$ over $mathrm{I}Sigma_{n} + exp$ can be proved in $mathrm{PV}$, a fragment of bounded arithmetic corresponding to polynomial-time computation. For $n ge 1$, this answers a question of Clote, Hajek, and Paris.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا