No Arabic abstract
We prove that any proof of a $forall Sigma^0_2$ sentence in the theory $mathrm{WKL}_0 + mathrm{RT}^2_2$ can be translated into a proof in $mathrm{RCA}_0$ at the cost of a polynomial increase in size. In fact, the proof in $mathrm{RCA}_0$ can be found by a polynomial-time algorithm. On the other hand, $mathrm{RT}^2_2$ has non-elementary speedup over the weaker base theory $mathrm{RCA}^*_0$ for proofs of $Sigma_1$ sentences. We also show that for $n ge 0$, proofs of $Pi_{n+2}$ sentences in $mathrm{B}Sigma_{n+1}+exp$ can be translated into proofs in $mathrm{I}Sigma_{n} + exp$ at polynomial cost. Moreover, the $Pi_{n+2}$-conservativity of $mathrm{B}Sigma_{n+1} + exp$ over $mathrm{I}Sigma_{n} + exp$ can be proved in $mathrm{PV}$, a fragment of bounded arithmetic corresponding to polynomial-time computation. For $n ge 1$, this answers a question of Clote, Hajek, and Paris.
In this paper, we show that $mathrm{RT}^{2}+mathsf{WKL}_0$ is a $Pi^{1}_{1}$-conservative extension of $mathrm{B}Sigma^0_3$.
We study the reverse mathematics and computability-the-o-re-tic strength of (stable) Ramseys Theorem for pairs and the related principles COH and DNR. We show that SRT$^2_2$ implies DNR over RCA$_0$ but COH does not, and answer a question of Mileti by showing that every computable stable $2$-coloring of pairs has an incomplete $Delta^0_2$ infinite homogeneous set. We also give some extensions of the latter result, and relate it to potential approaches to showing that SRT$^2_2$ does not imply RT$^2_2$.
The well-known Galvin-Prikry Theorem states that Borel subsets of the Baire space are Ramsey: Given any Borel subset $mathcal{X}subseteq [omega]^{omega}$, where $[omega]^{omega}$ is endowed with the metric topology, each infinite subset $Xsubseteq omega$ contains an infinite subset $Ysubseteq X$ such that $[Y]^{omega}$ is either contained in $mathcal{X}$ or disjoint from $mathcal{X}$. Kechris, Pestov, and Todorcevic point out in their seminal 2005 paper the dearth of similar results for homogeneous structures. Such results are a necessary step to the larger goal of finding a correspondence between structures with infinite dimensional Ramsey properties and topological dynamics, extending their correspondence between the Ramsey property and extreme amenability. In this article, we prove an analogue of the Galvin-Prikry theorem for the Rado graph. Any such infinite dimensional Ramsey theorem is subject to constraints following from the 2006 work of Laflamme, Sauer, and Vuksanovic. The proof uses techniques developed for the authors work on the Ramsey theory of the Henson graphs as well as some new methods for fusion sequences, used to bypass the lack of a certain amalgamation property enjoyed by the Baire space.
We study computable embeddings for pairs of structures, i.e. for classes containing precisely two non-isomorphic structures. Surprisingly, even for some pairs of simple linear orders, computable embeddings induce a non-trivial degree structure. Our main result shows that ${omega cdot k,omega^star cdot k}$ is computably embeddable in ${omega cdot t, omega^star cdot t}$ iff $k$ divides $t$.
A definable set in a pair (K, k) of algebraically closed fields is co-analyzable relative to the subfield k of the pair if and only if it is almost internal to k. To prove this and some related results for tame pairs of real closed fields we introduce a certain kind of bounded pregeometry for such pairs.