Do you want to publish a course? Click here

Localization optoacoustic tomography

157   0   0.0 ( 0 )
 Added by Xose Luis Dean Ben
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Localization-based imaging has revolutionized fluorescence optical microscopy and has also enabled unprecedented ultrasound images of microvascular structures in deep tissues. Herein, we introduce a new concept of localization optoacoustic tomography (LOAT) that employs rapid sequential acquisition of three-dimensional optoacoustic images from flowing absorbing particles. We show that the new method enables breaking through the spatial resolution barrier of acoustic diffraction while further enhancing the visibility of structures under limited-view tomographic conditions. Given the intrinsic sensitivity of optoacoustics to multiple hemodynamic and oxygenation parameters, LOAT may enable new level of performance in studying functional and anatomical alterations of microcirculation.



rate research

Read More

Optoacoustic image formation is conventionally based upon ultrasound time-of-flight readings from multiple detection positions. Herein, we exploit acoustic scattering to physically encode the position of optical absorbers in the acquired signals, thus reduce the amount of data required to reconstruct an image from a single waveform. This concept is experimentally tested by including a random distribution of scatterers between the sample and an ultrasound detector array. Ultrasound transmission through a randomized scattering medium was calibrated by raster scanning a light-absorbing microparticle across a Cartesian grid. Image reconstruction from a single time-resolved signal was then enabled with a regularized model-based iterative algorithm relying on the calibration signals. The signal compression efficiency is facilitated by the relatively short acquisition time window needed to capture the entire scattered wavefield. The demonstrated feasibility to form an image using a single recorded optoacoustic waveform paves a way to the development of faster and affordable optoacoustic imaging systems.
Optical diffraction tomography (ODT) is a three-dimensional (3D) label-free imaging technique. The 3D refractive index distribution of a sample can be reconstructed from multiple two-dimensional optical field images via ODT. Herein, we introduce a temporally low-coherence ODT technique using a ferroelectric liquid crystal spatial light modulator (FLC SLM). The fast binary-phase modulation provided by the FLC SLM ensures a high spatiotemporal resolution with considerably reduced coherent noise. We demonstrate the performance of the proposed system using various samples, including colloidal microspheres and live epithelial cells.
Acoustic impedance mismatches between soft tissues and bones are known to result in strong aberrations in optoacoustic and ultrasound images. Of particular importance are the severe distortions introduced by the human skull, impeding transcranial brain imaging with these modalities. While modelling of ultrasound propagation through the skull may in principle help correcting for some of the skull-induced aberrations, these approaches are commonly challenged by the highly heterogeneous and dispersive acoustic properties of the skull and lack of exact knowledge on its geometry and internal structure. Here we demonstrate that the spatio-temporal properties of the acoustic distortions induced by the skull are preserved for signal sources generated at neighboring intracranial locations by means of optoacoustic excitation. This optoacoustic memory effect is exploited for building a three-dimensional model accurately describing the generation, propagation and detection of time-resolved broadband optoacoustic waveforms traversing the skull. The memory-based model-based inversion is then shown to accurately recover the optical absorption distribution inside the skull with spatial resolution and image quality comparable to those attained in skull-free medium.
Here, we report analysis and summary of research in the field of localization microscopy for optical imaging. We introduce the basic elements of super-resolved localization microscopy methods for PALM and STORM, commonly used both in vivo and in vitro, discussing the core essentials of background theory, instrumentation and computational algorithms. We discuss the resolution limit of light microscopy and the mathematical framework for localizing fluorescent dyes in space beyond this limit, including the precision obtainable as a function of the amount of light emitted from a dye, and how it leads to a fundamental compromise between spatial and temporal precision. The properties of a good dye are outlined, as are the features of PALM and STORM super-resolution microscopy and adaptations that may need to be made to experimental protocols to perform localization determination. We analyse briefly some of the methods of modern super-resolved optical imaging that work through reshaping point spread functions and how they utilize aspects of localization microscopy, such as stimulated depletion (STED) methods and MINFLUX, and summarize modern methods that push localization into 3D using non-Gaussian point spread functions. We report on current methods for analyzing localization data including determination of 2D and 3D diffusion constants, molecular stoichiometries, and performing cluster analysis with cutting-edge techniques, and finally discuss how these techniques may be used to enable important insight into a range of biological processes.
Localization of single fluorescent molecules is key for physicochemical and biophysical measurements such as single-molecule tracking and super-resolution imaging by single-molecule localization microscopy (SMLM). Recently a series of methods have been developed in which the localization precision is enhanced by interrogating the molecular position with a sequence of spatially modulated patterns of light. Among them, the MINFLUX technique outstands for achieving a ~10-fold improvement compared to wide-field camera-based single-molecule localization, reaching ~1-2 nm localization precision at moderate photon counts. Here, we present a common mathematical framework for this type of measurement that allows a fair comparison between reported methods and facilitates the design and evaluation of new methods. With it, we benchmark all reported methods for single-molecule localization using sequential structured illumination, including long-established methods such as orbital tracking, along with two new proposed methods: orbital tracking and raster scanning with a minimum of intensity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا