Do you want to publish a course? Click here

Relation between polycyclic aromatic hydrocarbon, Br$alpha$ and infrared luminosity of local galaxies observed with AKARI

145   0   0.0 ( 0 )
 Added by Kazumi Murata
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We produce a catalogue of polycyclic aromatic hydrocarbon (PAH) 3.3 $mu$m, Br$alpha$ and infrared luminosity ($L$(IR)) of 412 local galaxies, and investigate a relation between these physical parameters. We measure the PAH 3.3 $mu$m and Br$alpha$ flux using AKARI 2-5 $mu$m spectra and the $L$(IR) using the AKARI-all-sky-survey data. The $L$(IR) and redshift ranges of our sample are $L$(IR)=$10^{9.7-12.8}$L$_odot$ and $z_{rm spec}=0.002-0.3$, respectively. We found that the ratio of $L$(PAH 3.3 $mu$m) to $L$(IR) is constant at $L$(IR) $<$ $10^{11} rm L_odot$ whereas it decreases with the $L$(IR) at higher $L$(IR). Also, the ratio of $L$(Br$alpha$) to $L$(IR) decreases with the $L$(IR). The both $L$(PAH)/$L$(IR) and $L$(Br$alpha$)/$L$(IR) ratios are not strongly dependent on galaxy type and dust temperature. The relative weakness of the two ratios could be attributed to destruction of PAH, a lack of UV photons exciting PAH molecules or ionising hydrogen gas, extremely high dust attenuation, or active galactic nucleus contribution to the $L$(IR). Although we cannot determine the cause of the decreases of the luminosity ratios, a clear correlation between them implies that they are related with each other. The catalogue presented in our work will be available at the AKARI archive web page.



rate research

Read More

83 - G. J. Bendo , N. Lu , A. Zijlstra 2020
We have examined polycyclic aromatic hydrocarbon (PAH) excitation in a sample of 25 nearby face-on spiral galaxies using the ratio of mid-infrared PAH emission to dust mass. Within 11 of the galaxies, we found that the PAH excitation was straightforwardly linked to ultraviolet or mid-infrared star formation tracers, which, along with other results studying the relation of PAH emission to star formation, indicates that the PAHs are most strongly excited in dusty shells around the star forming regions. Within another 5 galaxies, the PAH emission is enhanced around star forming regions only at specific galactocentric radii. In 6 more galaxies, PAH excitation is more strongly correlated with the evolved stellar populations as traced by 3.6 micron emission. The results for the remaining 3 galaxies were ambiguous. The radial gradients of the PAH/dust ratios were generally not linked to log(O/H) gradients except when the log(O/H) gradients were relatively steep. Galaxies in which PAHs were excited by evolved stars had relatively high far-ultraviolet to mid-infrared ratios, indicating that variations in the link between PAH excitation and different stellar populations is linked to changes in dust attenuation within galaxies. Alternately, differences in morphology could make it more likely that PAHs are excited by evolved stars, as 5 of the 6 galaxies where this occurs are late-type flocculent spiral galaxies. These heterogeneous results demonstrate the complexity of describing PAH excitation and have broad implications for using PAH emission as a star formation tracer as well as for modelling dust emission and radiative transfer.
105 - Norio Ota 2018
Interstellar infrared observation shows featured spectrum due to polycyclic aromatic hydrocarbon (PAH)at wavelength 3.3,6.2,7.6,7.8,8.6,and 11.3 micrometer,which are ubiquitously observed in many astronomical dust clouds and galaxies. Our previous first principles calculation revieled that viod induced coronene (C23H12)2+ and circumcoronene (C53H18)1+ could reproduce such spectrum very well. In this study, quantum-mechanic origin was studied through atomic configuration change and atomic vibration mode analysis. By a high speed particle attack, carbon void would be introduced in PAH. Molecular configuration was deformed by the Jahn-Teller quantum effect. Carbon SP3 local bond was created among SP2 graphene like carbon network. Also, carbon tetrahedron local structure was created. Such peculiar structure is the quantum origin. Those metamorphosed molecules would be photo-ionized by the central star strong photon irradiation resulting cation molecules. Atomic vibration mode of cation molecule (C23H12)2+ was compared with that of neutral one (C23H12). At 3.3 micrometer, both molecules show show C-H stretching mode and give fairly large infrared intensity. At 6.2,7.6,7.8, and 8.6 micrometer bands, cation molecule show complex C-C stretching and shrinking mixing modes and remain large infrared emission. Whereas, neutral molecule gives harmonic motion, which cancelles each other resulting very small infrared intensity. At 11.3 micrometer, both neutral and cation molecules show C-H bending motion perpendicular to a molecular plane, which contributes to strong emission. Actual observed spectrum would be a sum of such quantum-mechanic origined molecules.
124 - K.Murata , H.Matsuhara , H.Inami 2014
We study the behaviour of polycyclic aromatic hydrocarbon emission in galaxies at z=0.3-1.4 using 1868 samples from the revised catalogue of AKARI North Ecliptic Pole Deep survey. The continuous filter coverage at 2-24um makes it possible to measure 8um luminosity, which is dominated by polycyclic aromatic hydrocarbon emission for galaxies at up to z=2. We compare the IR8 (= LIR/L(8)) and 8um to 4.5um luminosity ratio (L(8)/L(4.5)) with the starburstiness, Rsb, defined as excess of specific star -formation rate over that of main-sequence galaxy. All AGN candidates were excluded from our sample using an SED fitting. We found L(8)/L(4.5) increases with starburstiness at log Rsb < 0.5 and stays constant at higher starburstiness. On the other hand, IR8 is constant at log Rsb < 0, while it increases with starburstiness at log Rsb > 0. This behaviour is seen in all redshift range of our study. These results indicate that starburst galaxies have deficient polycyclic aromatic hydrocarbon emission compared with main-sequence galaxies. We also find that galaxies with extremely high L(8)/L(4.5) ratio have only moderate starburstiness. These results suggest that starburst galaxies have compact star-forming regions with intense radiation, which destroys PAHs and/or have dusty HII regions resulting in a lack of ionising photons.
144 - E. R. Micelotta 2009
Context: PAHs appear to be an ubiquitous interstellar dust component but the effects of shocks waves upon them have never been fully investigated. Aims: To study the effects of energetic (~0.01-1 keV) ion (H, He and C) and electron collisions on PAHs in interstellar shock waves.Methods: We calculate the ion-PAH and electron-PAH nuclear and electronic interactions, above the threshold for carbon atom loss from a PAH, in 50-200 km/s shock waves in the warm intercloud medium. Results: Interstellar PAHs (Nc = 50) do not survive in shocks with velocities greater than 100 km/s and larger PAHs (Nc = 200) are destroyed for shocks with velocities greater/equal to 125 km/s. For shocks in the ~75 - 100 km/s range, where destruction is not complete, the PAH structure is likely to be severely denatured by the loss of an important fraction (20-40%) of the carbon atoms. We derive typical PAH lifetimes of the order of a few x10^8 yr for the Galaxy. These results are robust and independent of the uncertainties in some key parameters that have yet to be well-determined experimentally. Conclusions: The observation of PAH emission in shock regions implies that that emission either arises outside the shocked region or that those regions entrain denser clumps that, unless they are completely ablated and eroded in the shocked gas, allow dust and PAHs to survive in extreme environments.
163 - E. R. Micelotta (1 , 2 , 3 2010
Context: Cosmic rays are present in almost all phases of the ISM. PAHs and cosmic rays represent an abundant and ubiquitous component of the interstellar medium. However, the interaction between them has never before been fully investigated. Aims: To study the effects of cosmic ray ion (H, He, CNO and Fe-Co-Ni) and electron bombardment of PAHs in galactic and extragalactic environments. Methods: We calculate the nuclear and electronic interactions for collisions between PAHs and cosmic ray ions and electrons with energies between 5 MeV/nucleon and 10 GeV, above the threshold for carbon atom loss, in normal galaxies, starburst galaxies and cooling flow galaxy clusters. Results: The timescale for PAH destruction by cosmic ray ions depends on the electronic excitation energy Eo and on the amount of energy available for dissociation. Small PAHs are destroyed faster, with He and the CNO group being the more effective projectiles. For electron collisions, the lifetime is independent of the PAH size and varies with the threshold energy To. Conclusions: Cosmic rays process the PAHs in diffuse clouds, where the destruction due to interstellar shocks is less efficient. In the hot gas filling galactic halos, outflows of starburst galaxies and intra-cluster medium, PAH destruction is dominated by collisions with thermal ions and electrons, but this mechanism is ineffective if the molecules are in denser cloudlets and isolated from the hot gas. Cosmic rays can access the denser clouds and together with X-rays will set the lifetime of those protected PAHs. This limits the use of PAHs as a`dye for tracing the presence of cold entrained material.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا