Do you want to publish a course? Click here

Inverse spin Hall effect in Nd doped SrTiO3

102   0   0.0 ( 0 )
 Added by Wenxu Zhang Dr.
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Conversion of spin to charge current was observed in SrTiO3 doped with Nd (Nd:STO), which exhibited a metallic behavior even with low concentration doping. The obvious variation of DC voltages for Py/Nd:STO, obtained by inverting the spin diffusion direction, demonstrated that the detected signals contained the contribution from the inverse spin Hall effect (ISHE) induced by the spin dependent scattering from Nd impurities with strong spin-orbit interaction. The DC voltages of the ISHE for Nd:STO were measured at different microwave frequency and power, which revealed that spin currents were successfully injected into doped STO layer by spin pumping. The linear relation between the ISHE resistivity and the resistivity induced by impurities implied that the skew scattering was the dominant contribution in this case, and the spin Hall angle was estimated to be 0.17%. This work demonstrated that extrinsic spin dependent scattering in oxides can be used in spintroics besides that in heavy elements doped metals.



rate research

Read More

We have measured the inverse spin Hall effect (ISHE) in textit{n}-Ge at room temperature. The spin current in germanium was generated by spin pumping from a CoFeB/MgO magnetic tunnel junction in order to prevent the impedance mismatch issue. A clear electromotive force was measured in Ge at the ferromagnetic resonance of CoFeB. The same study was then carried out on several test samples, in particular we have investigated the influence of the MgO tunnel barrier and sample annealing on the ISHE signal. First, the reference CoFeB/MgO bilayer grown on SiO$_{2}$ exhibits a clear electromotive force due to anisotropic magnetoresistance and anomalous Hall effect which is dominated by an asymmetric contribution with respect to the resonance field. We also found that the MgO tunnel barrier is essential to observe ISHE in Ge and that sample annealing systematically lead to an increase of the signal. We propose a theoretical model based on the presence of localized states at the interface between the MgO tunnel barrier and Ge to account for these observations. Finally, all of our results are fully consistent with the observation of ISHE in heavily doped $n$-Ge and we could estimate the spin Hall angle at room temperature to be $approx$0.001.
Large charge-to-spin conversion (spin Hall angle) and spin Hall conductivity are prerequisites for development of next generation power efficient spintronic devices. In this context, heavy metals (e.g. Pt, W etc.), topological insulators, antiferromagnets are usually considered because they exhibit high spin-orbit coupling (SOC). In addition to the above materials, 5d transition metal oxide e.g. Iridium Oxide (IrO 2 ) is a potential candidate which exhibits high SOC strength. Here we report a study of spin pumping and inverse spin Hall effect (ISHE), via ferromagnetic resonance (FMR), in IrO 2 /CoFeB system. We identify the individual contribution of spin pumping and other spin rectification effects in the magnetic layer, by investigating the in-plane angular dependence of ISHE signal. Our analysis shows significant contribution of spin pumping effect to the ISHE signal. We show that polycrystalline IrO 2 thin film exhibits high spin Hall conductivity and spin Hall angle which are comparable to the values of Pt.
High quality nanometer-thick (20 nm, 7 nm and 4 nm) epitaxial YIG films have been grown on GGG substrates using pulsed laser deposition. The Gilbert damping coefficient for the 20 nm thick films is 2.3 x 10-4 which is the lowest value reported for sub-micrometric thick films. We demonstrate Inverse spin Hall effect (ISHE) detection of propagating spin waves using Pt. The amplitude and the lineshape of the ISHE voltage correlate well to the increase of the Gilbert damping when decreasing thickness of YIG. Spin Hall effect based loss-compensation experiments have been conducted but no change in the magnetization dynamics could be detected.
A Comment on Phys. Rev. Lett. 111, 217204 (2013), Detection of Microwave Spin Pumping Using the Inverse Spin Hall Effect
Direct visualizations of spin accumulation due to the enhanced spin Hall effect (SHE) in bismuth (Bi) - doped silicon (Si) at room temperature are realized by using helicity-dependent photovoltage (HDP) measurements. Under application of a dc current to the Bi-doped Si, clear helicity-dependent photovoltages are detected at the edges of the Si channel, indicating a perpendicular spin accumulation due to the SHE. In contrast, the HDP signals are negligibly small for phosphorus-doped Si. Compared to a platinum channel, which has a large spin Hall angle, more than two-orders of magnitude larger HDP signals are obtained in the Bi-doped Si.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا