Do you want to publish a course? Click here

Inverse Spin Hall Effect in nanometer-thick YIG/Pt system

158   0   0.0 ( 0 )
 Added by Paolo Bortolotti
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

High quality nanometer-thick (20 nm, 7 nm and 4 nm) epitaxial YIG films have been grown on GGG substrates using pulsed laser deposition. The Gilbert damping coefficient for the 20 nm thick films is 2.3 x 10-4 which is the lowest value reported for sub-micrometric thick films. We demonstrate Inverse spin Hall effect (ISHE) detection of propagating spin waves using Pt. The amplitude and the lineshape of the ISHE voltage correlate well to the increase of the Gilbert damping when decreasing thickness of YIG. Spin Hall effect based loss-compensation experiments have been conducted but no change in the magnetization dynamics could be detected.



rate research

Read More

We measure the ordinary and the anomalous Hall effect in a set of yttrium iron garnet$|$platinum (YIG$|$Pt) bilayers via magnetization orientation dependent magnetoresistance experiments. Our data show that the presence of the ferrimagnetic insulator YIG leads to an anomalous Hall like signature in Pt, sensitive to both Pt thickness and temperature. Interpretation of the experimental findings in terms of the spin Hall anomalous Hall effect indicates that the imaginary part of the spin mixing interface conductance $G_{mathrm{i}}$ plays a crucial role in YIG$|$Pt bilayers. In particular, our data suggest a sign change in $G_{mathrm{i}}$ between $10,mathrm{K}$ and $300,mathrm{K}$. Additionally, we report a higher order Hall effect, which appears in thin Pt films on YIG at low temperatures.
83 - Sergey Dushenko 2018
Electric gating can strongly modulate a wide variety of physical properties in semiconductors and insulators, such as significant changes of conductivity in silicon, appearance of superconductivity in SrTiO3, the paramagnet-ferromagnet transition in (In,Mn)As and so on. The key to such modulation is charge accumulation in solids. Thus, it has been believed that such modulation is out of reach for conventional metals where the number of carriers is too large. However, success in tuning the Curie temperature of ultrathin cobalt gave hope of finally achieving such degree of control even in metallic materials. Here, we show reversible modulation of up to two orders of magnitude of the inverse spin Hall effect - a phenomenon that governs interconversion between spin and charge currents - in ultrathin platinum. Spin-to-charge conversion enables the generation and use of electric and spin currents in the same device, which is crucial for the future of spintronics and electronics.
Spin waves in ferrimagnetic yttrium iron garnet (YIG) films with ultralow magnetic damping are relevant for magnon-based spintronics and low-power wave-like computing. The excitation frequency of spin waves in YIG is rather low in weak external magnetic fields because of its small saturation magnetization, which limits the potential of YIG films for high-frequency applications. Here, we demonstrate how exchange-coupling to a CoFeB film enables efficient excitation of high-frequency perpendicular standing spin waves (PSSWs) in nanometer-thick (80 nm and 295 nm) YIG films using uniform microwave magnetic fields. In the 295-nm-thick YIG film, we measure intense PSSW modes up to 10th order. Strong hybridization between the PSSW modes and the ferromagnetic resonance mode of CoFeB leads to characteristic anti-crossing behavior in broadband spin-wave spectra. A dynamic exchange torque at the YIG/CoFeB interface explains the excitation of PSSWs. The localized torque originates from exchange coupling between two dissimilar magnetization precessions in the YIG and CoFeB layers. As a consequence, spin waves are emitted from the YIG/CoFeB interface and PSSWs form when their wave vector matches the perpendicular confinement condition. PSSWs are not excited when the exchange coupling between YIG and CoFeB is suppressed by a Ta spacer layer. Micromagnetic simulations confirm the exchange-torque mechanism.
115 - T. Shang , Q. F. Zhan , H. L. Yang 2016
We investigate the spin-current transport through antiferromagnetic insulator (AFMI) by means of the spin-Hall magnetoressitance (SMR) over a wide temperature range in Pt/NiO/Y$_3$Fe$_5$O$_{12}$ (Pt/NiO/YIG) heterostructures. By inserting the AFMI NiO layer, the SMR dramatically decreases by decreasing the temperature down to the antiferromagnetically ordered state of NiO, which implies that the AFM order prevents rather than promotes the spin-current transport. On the other hand, the magnetic proximity effect (MPE) on induced Pt moments by YIG, which entangles with the spin-Hall effect (SHE) in Pt, can be efficiently screened, and pure SMR can be derived by insertion of NiO. The dual roles of the NiO insertion including efficiently blocking the MPE and transporting the spin current from Pt to YIG are outstanding compared with other antiferromagnetic (AFM) metal or nonmagnetic metal (NM).
We investigate the inverse spin Hall voltage of a 10nm thin Pt strip deposited on the magnetic insulators Y3Fe5O12 (YIG) and NiFe2O4 (NFO) with a temperature gradient in the film plane. We observe characteristics typical of the spin Seebeck effect, although we do not observe a change of sign of the voltage at the Pt strip when it is moved from hot to cold side, which is believed to be the most striking feature of the transverse spin Seebeck effect. Therefore, we relate the observed voltages to the longitudinal spin Seebeck effect generated by a parasitic out-of-plane temperature gradient, which can be simulated by contact tips of different material and heat conductivities and by tip heating. This work gives new insights into the interpretation of transverse spin Seebeck effect experiments, which are still under discussion.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا