Do you want to publish a course? Click here

Timing calibration of the APOLLO experiment

62   0   0.0 ( 0 )
 Added by James Battat
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Apache Point Observatory Lunar Laser-ranging Operation (APOLLO) began millimeter-precision ranging to the Moon in 2006. Until now, a comprehensive validation of APOLLO system range accuracy has not been possible because of centimeter-scale deficiencies in computational models of the Earth-Moon range, and because APOLLO lacked an internal timing calibration system. Here, we report on the development of a system that enables in-situ calibration of the timing response of the APOLLO apparatus, simultaneous with lunar range measurements. The system was installed in August 2016. Preliminary results show that the APOLLO system can provide lunar range measurements with millimeter accuracy.



rate research

Read More

Lunar laser ranging provides a number of leading experimental tests of gravitation -- important in our quest to unify General Relativity and the Standard Model of physics. The Apache Point Observatory Lunar Laser-ranging Operation (APOLLO) has for years achieved median range precision at the ~2 mm level. Yet residuals in model-measurement comparisons are an order-of-magnitude larger, raising the question of whether the ranging data are not nearly as accurate as they are precise, or if the models are incomplete or ill-conditioned. This paper describes a new absolute calibration system (ACS) intended both as a tool for exposing and eliminating sources of systematic error, and also as a means to directly calibrate ranging data in-situ. The system consists of a high-repetition-rate (80 MHz) laser emitting short (< 10 ps) pulses that are locked to a cesium clock. In essence, the ACS delivers photons to the APOLLO detector at exquisitely well-defined time intervals as a truth input against which APOLLOs timing performance may be judged and corrected. Preliminary analysis indicates no inaccuracies in APOLLO data beyond the ~3 mm level, suggesting that historical APOLLO data are of high quality and motivating continued work on model capabilities. The ACS provides the means to deliver APOLLO data both accurate and precise below the 2 mm level.
The Earth-Moon-Sun system has traditionally provided the best laboratory for testing the strong equivalence principle. For a decade, the Apache Point Observatory Lunar Laser-ranging Operation (APOLLO) has been producing the worlds best lunar laser ranging data. At present, a single observing session of about an hour yields a distance measurement with uncertainty of about 2~mm, an order of magnitude advance over the best pre-APOLLO lunar laser ranging data. However, these superb data have not yet yielded scientific results commensurate with their accuracy, number, and temporal distribution. There are two reasons for this. First, even in the relatively clean environment of the Earth-Moon system, a large number of effects modify the measured distance importantly and thus need to be included in the analysis model. The second reason is more complicated. The traditional problem with the analysis of solar-system metric data is that the physical model must be truncated to avoid extra parameters that would increase the condition number of the estimator. Even in a typical APOLLO analysis that does not include parameters of gravity physics, the condition number is very high: $8 times 10^{10}$.
61 - Y. Liang , T.W. Murphy , Jr. 2017
The Apache Point Observatory Lunar Laser-ranging Operation (APOLLO) has produced a large volume of high-quality lunar laser ranging (LLR) data since it began operating in 2006. For most of this period, APOLLO has relied on a GPS-disciplined, high-stability quartz oscillator as its frequency and time standard. The recent addition of a cesium clock as part of a timing calibration system initiated a comparison campaign between the two clocks. This has allowed correction of APOLLO range measurements--called normal points--during the overlap period, but also revealed a mechanism to correct for systematic range offsets due to clock errors in historical APOLLO data. Drift of the GPS clock on ~1000 s timescales contributed typically 2.5 mm of range error to APOLLO measurements, and we find that this may be reduced to ~1.6 mm on average. We present here a characterization of APOLLO clock errors, the method by which we correct historical data, and the resulting statistics.
The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) is a sounding rocket experiment that observes the soft X-ray spectrum of the Sun from 6.0 - 24 Angstrom (0.5 - 2.0 keV), successfully launched on 30 July 2021. End-to-end alignment of the flight instrument and calibration experiments are carried out using the X-ray and Cryogenic Facility (XRCF) at NASA Marshall Space Flight Center. In this paper, we present the calibration experiments of MaGIXS, which include wavelength calibration, measurement of line spread function, and determination of effective area. Finally, we use the measured instrument response function to predict the expected count rates for MaGIXS flight observation looking at a typical solar active region
168 - Matteo Bachetti 2020
The Nuclear Spectroscopic Telescope Array (NuSTAR) mission is the first focusing X-ray telescope in the hard X-ray (3-79 keV) band. Among the phenomena that can be studied in this energy band, some require high time resolution and stability: rotation-powered and accreting millisecond pulsars, fast variability from black holes and neutron stars, X-ray bursts, and more. Moreover, a good alignment of the timestamps of X-ray photons to UTC is key for multi-instrument studies of fast astrophysical processes. In this Paper, we describe the timing calibration of the NuSTAR mission. In particular, we present a method to correct the temperature-dependent frequency response of the on-board temperature-compensated crystal oscillator. Together with measurements of the spacecraft clock offsets obtained during downlinks passes, this allows a precise characterization of the behavior of the oscillator. The calibrated NuSTAR event timestamps for a typical observation are shown to be accurate to a precision of ~65 microsec.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا