Do you want to publish a course? Click here

An absolute calibration system for millimeter-accuracy APOLLO measurements

54   0   0.0 ( 0 )
 Added by James Battat
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Lunar laser ranging provides a number of leading experimental tests of gravitation -- important in our quest to unify General Relativity and the Standard Model of physics. The Apache Point Observatory Lunar Laser-ranging Operation (APOLLO) has for years achieved median range precision at the ~2 mm level. Yet residuals in model-measurement comparisons are an order-of-magnitude larger, raising the question of whether the ranging data are not nearly as accurate as they are precise, or if the models are incomplete or ill-conditioned. This paper describes a new absolute calibration system (ACS) intended both as a tool for exposing and eliminating sources of systematic error, and also as a means to directly calibrate ranging data in-situ. The system consists of a high-repetition-rate (80 MHz) laser emitting short (< 10 ps) pulses that are locked to a cesium clock. In essence, the ACS delivers photons to the APOLLO detector at exquisitely well-defined time intervals as a truth input against which APOLLOs timing performance may be judged and corrected. Preliminary analysis indicates no inaccuracies in APOLLO data beyond the ~3 mm level, suggesting that historical APOLLO data are of high quality and motivating continued work on model capabilities. The ACS provides the means to deliver APOLLO data both accurate and precise below the 2 mm level.



rate research

Read More

The Apache Point Observatory Lunar Laser-ranging Operation (APOLLO) began millimeter-precision ranging to the Moon in 2006. Until now, a comprehensive validation of APOLLO system range accuracy has not been possible because of centimeter-scale deficiencies in computational models of the Earth-Moon range, and because APOLLO lacked an internal timing calibration system. Here, we report on the development of a system that enables in-situ calibration of the timing response of the APOLLO apparatus, simultaneous with lunar range measurements. The system was installed in August 2016. Preliminary results show that the APOLLO system can provide lunar range measurements with millimeter accuracy.
61 - Y. Liang , T.W. Murphy , Jr. 2017
The Apache Point Observatory Lunar Laser-ranging Operation (APOLLO) has produced a large volume of high-quality lunar laser ranging (LLR) data since it began operating in 2006. For most of this period, APOLLO has relied on a GPS-disciplined, high-stability quartz oscillator as its frequency and time standard. The recent addition of a cesium clock as part of a timing calibration system initiated a comparison campaign between the two clocks. This has allowed correction of APOLLO range measurements--called normal points--during the overlap period, but also revealed a mechanism to correct for systematic range offsets due to clock errors in historical APOLLO data. Drift of the GPS clock on ~1000 s timescales contributed typically 2.5 mm of range error to APOLLO measurements, and we find that this may be reduced to ~1.6 mm on average. We present here a characterization of APOLLO clock errors, the method by which we correct historical data, and the resulting statistics.
The Earth-Moon-Sun system has traditionally provided the best laboratory for testing the strong equivalence principle. For a decade, the Apache Point Observatory Lunar Laser-ranging Operation (APOLLO) has been producing the worlds best lunar laser ranging data. At present, a single observing session of about an hour yields a distance measurement with uncertainty of about 2~mm, an order of magnitude advance over the best pre-APOLLO lunar laser ranging data. However, these superb data have not yet yielded scientific results commensurate with their accuracy, number, and temporal distribution. There are two reasons for this. First, even in the relatively clean environment of the Earth-Moon system, a large number of effects modify the measured distance importantly and thus need to be included in the analysis model. The second reason is more complicated. The traditional problem with the analysis of solar-system metric data is that the physical model must be truncated to avoid extra parameters that would increase the condition number of the estimator. Even in a typical APOLLO analysis that does not include parameters of gravity physics, the condition number is very high: $8 times 10^{10}$.
We present a method for beam deconvolution for cosmic microwave background (CMB) anisotropy measurements. The code takes as input the time-ordered data, along with the corresponding detector pointings and known beam shapes, and produces as output the harmonic a_Tlm, a_Elm, and a_Blm coefficients of the observed sky. From these one can further construct temperature and Q and U polarisation maps. The method is applicable to absolute CMB measurements with wide sky coverage, and is independent of the scanning strategy. We test the code with extensive simulations, mimicking the resolution and data volume of Planck 30GHz and 70GHz channels, but with exaggerated beam asymmetry. We apply it to multipoles up to l=1700 and examine the results in both pixel space and harmonic space. We also test the method also in presence of white noise.
80 - K. Link , T. Huege , W.D. Apel 2015
One of the main aims of the LOPES experiment was the evaluation of the absolute amplitude of the radio signal of air showers. This is of special interest since the radio technique offers the possibility for an independent and highly precise determination of the energy scale of cosmic rays on the basis of signal predictions from Monte Carlo simulations. For the calibration of the amplitude measured by LOPES we used an external source. Previous comparisons of LOPES measurements and simulations of the radio signal amplitude predicted by CoREAS revealed a discrepancy of the order of a factor of two. A re-measurement of the reference calibration source, now performed for the free field, was recently performed by the manufacturer. The updated calibration values lead to a lowering of the reconstructed electric field measured by LOPES by a factor of $2.6 pm 0.2$ and therefore to a significantly better agreement with CoREAS simulations. We discuss the updated calibration and its impact on the LOPES analysis results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا