Do you want to publish a course? Click here

A conceptual approach to the problem of action-angle variables

54   0   0.0 ( 0 )
 Added by Nguyen Tien Zung
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we develop a general conceptual approach to the problem of existence of action-angle variables for dynamical systems, which establishes and uses the fundamental conservation property of associated torus actions: anything which is preserved by the system is also preserved by the associated torus actions. This approach allows us to obtain, among other things: a) the shortest and most conceptual easy to understand proof of the classical Arnold--Liouville--Mineur theorem; b) basically all known results in the literature about the existence of action-angle variables in various contexts can be recovered in a unifying way, with simple proofs, using our approach; c) new results on action-angle variables in many different contexts, including systems on contact manifolds, systems on presymplectic and Dirac manifolds, action-angle variables near singularities, stochastic systems, and so on. Even when there are no natural action variables, our approach still leads to useful normal forms for dynamical systems, which are not necessarily integrable.



rate research

Read More

Transseries expansions build upon ordinary power series methods by including additional basis elements such as exponentials and logarithms. Alternative summation methods can then be used to resum series to obtain more efficient approximations, and have been successfully widely applied in the study of continuous linear and nonlinear, single and multidimensional problems. In particular, a method known as transasymptotic resummation can be used to describe continuous behaviour occurring on multiple scales without the need for asymptotic matching. Here we apply transasymptotic resummation to discrete systems and show that it may be used to naturally and efficiently describe discrete delayed bifurcations, or canards, in singularly-perturbed variants of the logistic map which contain delayed period-doubling bifurcations. We use transasymptotic resummation to approximate the solutions, and describe the behaviour of the solution across the bifurcations. This approach has two significant advantages: it may be applied in systematic fashion even across multiple bifurcations, and the exponential multipliers encode information about the bifurcations that are used to explain effects seen in the solution behaviour.
In this article, we study the persistence of properties of a given classical deter-ministic dierential equation under a stochastic perturbation of two distinct forms: external and internal. The rst case corresponds to add a noise term to a given equation using the framework of It^o or Stratonovich stochastic dierential equations. The second case corresponds to consider a parameters dependent dierential equations and to add a stochastic dynamics on the parameters using the framework of random ordinary dierential equations. Our main concerns for the preservation of properties is stability/instability of equilibrium points and symplectic/Poisson Hamiltonian structures. We formulate persistence theorem in these two cases and prove that the cases of external and internal stochastic perturbations are drastically dierent. We then apply our results to develop a stochastic version of the Landau-Lifshitz equation. We discuss in particular previous results obtain by Etore and al. in [P. Etore, S.Labbe, J. Lelong, Long time behaviour of a stochastic nanoparticle, J. Differential Equations 257 (2014), 2115-2135] and we nally propose a new family of stochastic Landau-Lifshitz equations.
52 - James Binney 2019
The conventional approach to orbit trapping at Lindblad resonances via a pendulum equation fails when the parent of the trapped orbits is too circular. The problem is explained and resolved in the context of the Torus Mapper and a realistic Galaxy model. Tori are computed for orbits trapped at both the inner and outer Lindblad resonances of our Galaxy. At the outer Lindblad resonance, orbits are quasiperiodic and can be accurately fitted by torus mapping. At the inner Lindblad resonance, orbits are significantly chaotic although far from ergodic, and each orbit explores a small range of tori obtained by torus mapping.
136 - Jinxin Xue 2014
In this paper, we show that there is a Cantor set of initial conditions in the planar four-body problem such that all four bodies escape to infinity in a finite time, avoiding collisions. This proves the Painlev{e} conjecture for the four-body case, and thus settles the last open case of the conjecture.
We study the inverse scattering problem of determining a magnetic field and electric potential from scattering measurements corresponding to finitely many plane waves. The main result shows that the coefficients are uniquely determined by $2n$ measurements up to a natural gauge. We also show that one can recover the full first order term for a related equation having no gauge invariance, and that it is possible to reduce the number of measurements if the coefficients have certain symmetries. This work extends the fixed angle scattering results of Rakesh and M. Salo to Hamiltonians with first order perturbations, and it is based on wave equation methods and Carleman estimates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا