Do you want to publish a course? Click here

The fixed angle scattering problem with a first order perturbation

231   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the inverse scattering problem of determining a magnetic field and electric potential from scattering measurements corresponding to finitely many plane waves. The main result shows that the coefficients are uniquely determined by $2n$ measurements up to a natural gauge. We also show that one can recover the full first order term for a related equation having no gauge invariance, and that it is possible to reduce the number of measurements if the coefficients have certain symmetries. This work extends the fixed angle scattering results of Rakesh and M. Salo to Hamiltonians with first order perturbations, and it is based on wave equation methods and Carleman estimates.



rate research

Read More

We analyze the analytic Landau damping problem for the Vlasov-HMF equation, by fixing the asymptotic behavior of the solution. We use a new method for this scattering problem, closer to the one used for the Cauchy problem. In this way we are able to compare the two results, emphasizing the different influence of the plasma echoes in the two approaches. In particular, we prove a non-perturbative result for the scattering problem.
179 - Shiqi Ma , Mikko Salo 2020
We consider a fixed angle inverse scattering problem in the presence of a known Riemannian metric. First, assuming a no caustics condition, we study the direct problem by utilizing the progressing wave expansion. Under a symmetry assumption on the metric, we obtain uniqueness and stability results in the inverse scattering problem for a potential with data generated by two incident waves from opposite directions. Further, similar results are given using one measurement provided the potential also satisfies a symmetry assumption. This work extends the results of [23,24] from the Euclidean case to certain Riemannian metrics.
For a general subcritical second-order elliptic operator $P$ in a domain $Omega subset mathbb{R}^n$ (or noncompact manifold), we construct Hardy-weight $W$ which is optimal in the following sense. The operator $P - lambda W$ is subcritical in $Omega$ for all $lambda < 1$, null-critical in $Omega$ for $lambda = 1$, and supercritical near any neighborhood of infinity in $Omega$ for any $lambda > 1$. Moreover, if $P$ is symmetric and $W>0$, then the spectrum and the essential spectrum of $W^{-1}P$ are equal to $[1,infty)$, and the corresponding Agmon metric is complete. Our method is based on the theory of positive solutions and applies to both symmetric and nonsymmetric operators. The constructed Hardy-weight is given by an explicit simple formula involving two distinct positive solutions of the equation $Pu=0$, the existence of which depends on the subcriticality of $P$ in $Omega$.
118 - Amic Frouvelle 2020
We present a simple model of alignment of a large number of rigid bodies (modeled by rotation matrices) subject to internal rotational noise. The numerical simulations exhibit a phenomenon of first order phase transition with respect the alignment intensity, with abrupt transition at two thresholds. Below the first threshold, the system is disordered in large time: the rotation matrices are uniformly distributed. Above the second threshold, the long time behaviour of the system is to concentrate around a given rotation matrix. When the intensity is between the two thresholds, both situations may occur. We then study the mean-field limit of this model, as the number of particles tends to infinity, which takes the form of a nonlinear Fokker--Planck equation. We describe the complete classification of the steady states of this equation, which fits with numerical experiments. This classification was obtained in a previous work by Degond, Diez, Merino-Aceituno and the author, thanks to the link between this model and a four-dimensional generalization of the Doi--Onsager equation for suspensions of rodlike polymers interacting through Maier--Saupe potential. This previous study concerned a similar equation of BGK type for which the steady-states were the same. We take advantage of the stability results obtained in this framework, and are able to prove the exponential stability of two families of steady-states: the disordered uniform distribution when the intensity of alignment is less than the second threshold, and a family of non-isotropic steady states (one for each possible rotation matrix, concentrated around it), when the intensity is greater than the first threshold. We also show that the other families of steady-states are unstable, in agreement with the numerical observations.
332 - Yury Shestopalov 2009
The diffraction of a plane wave by a transversely inhomogeneous isotropic nonmagnetic linearly polarized dielectric layer filled with a Kerr-type nonlinear medium is considered. The analytical and numerical solution techniques are developed. The diffraction problem is reduced to a singular boundary value problem for a semilinear second-order ordinary differential equation with a cubic nonlinearity and then to a cubic-nonlinear integral equation of the second kind and to a system of nonlinear operator equations of the second kind solved using iterations. Sufficient conditions of the unique solvability are obtained using the contraction principle.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا