Do you want to publish a course? Click here

Radiative energy loss of neighboring subjets

47   0   0.0 ( 0 )
 Added by Konrad Tywoniuk
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We compute the in-medium energy loss probability distribution of two neighboring subjets at leading order, in the large-$N_c$ approximation. Our result exhibits a gradual onset of color decoherence of the system and accounts for two expected limiting cases. When the angular separation is smaller than the characteristic angle for medium-induced radiation, the two-pronged substructure lose energy coherently as a single color charge, namely that of the parent parton. At large angular separation the two subjets lose energy independently. Our result is a first step towards quantifying effects of energy loss as a result of the fluctuation of the multi-parton jet substructure and therefore goes beyond the standard approach to jet quenching based on single parton energy loss. We briefly discuss applications to jet observables in heavy-ion collisions.



rate research

Read More

We revisit the calculation of multiple parton scattering of a heavy quark in nuclei within the framework of recently improved high-twist factorization formalism, in which gauge invariance is ensured by a delicate setup of the initial partons transverse momenta. We derive a new result for medium modified heavy quark fragmentation functions in deeply inelastic scattering. It is consistent with the previous calculation of light quark energy loss in the massless limit, but leads to a new correction term in the heavy quark case, which vanishes in the soft gluon radiation limit. We show numerically the significance of the new correction term in the calculation of heavy quark energy loss as compared to previous studies and with soft gluon radiation approximation.
118 - Konrad Tywoniuk 2017
QCD jets, produced copiously in heavy-ion collisions at LHC and also at RHIC, serve as probes of the dynamics of the quark-gluon plasma (QGP). Jet fragmentation in the medium is interesting in its own right and, in order to extract pertinent information about the QGP, it has to be well understood. We present a brief overview of the physics involved and argue that jet substructure observables provide new opportunities for understanding the nature of the modifications.
The recent experimental results on the flow of $J/psi$ at LHC show that ample amount of charm quarks is present in the quark gluon plasma and probably they are thermalized. In the current study we investigate the effect of thermalized charm quarks on the heavy quark energy loss to leading order in the QCD coupling constant. It is seen that the energy loss of charm quark increases due to the inclusion of thermal charm quarks. Running coupling has also been implemented to study heavy quark energy loss and we find a modest increase in the heavy quark energy loss due to heavy-heavy scattering at higher temperature to be realized at LHC energies.
We investigate the medium induced fragmentation of jets in a high-temperature QCD plasma. Based on an effective kinetic theory of QCD, we study the non-equilibrium evolution of the jet shower and the chemical equilibration of jet fragments in the medium. By including radiative emissions as well as elastic interactions, our approach extends all the way from the jet energy scale to the temperature of the medium and includes important effects such as the recoil of the medium. We present results for the in-medium fragmentation, including chemical and kinetic equilibration of the soft fragments and discuss implications of our result to jet quenching physics and the problem of thermalization of the quark-gluon plasma in heavy ion collisions.
An energetic parton travelling through a quark-gluon plasma loses energy via occasional hard scatterings and frequent softer interactions. Whether or not these interactions admit a perturbative description, the effect of the soft interactions can be factorized and encoded in a small number of transport coefficients. In this work, we present a hard-soft factorized parton energy loss model which combines a stochastic description of soft interactions and rate-based modelling of hard scatterings. We introduce a scale to estimate the regime of validity of the stochastic description, allowing for a better understanding of the models applicability at small and large coupling. We study the energy and fermion-number cascade of energetic partons as an application of the model.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا