Do you want to publish a course? Click here

Effect of thermalized charm on heavy quark energy loss

316   0   0.0 ( 0 )
 Added by Souvik Priyam Adhya
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

The recent experimental results on the flow of $J/psi$ at LHC show that ample amount of charm quarks is present in the quark gluon plasma and probably they are thermalized. In the current study we investigate the effect of thermalized charm quarks on the heavy quark energy loss to leading order in the QCD coupling constant. It is seen that the energy loss of charm quark increases due to the inclusion of thermal charm quarks. Running coupling has also been implemented to study heavy quark energy loss and we find a modest increase in the heavy quark energy loss due to heavy-heavy scattering at higher temperature to be realized at LHC energies.



rate research

Read More

In this paper, we calculate the soft-collisional energy loss of heavy quarks traversing the viscous quark-gluon plasma including the effects of a finite relaxation time $tau_pi$ on the energy loss. We find that the collisional energy loss depends appreciably on $tau_pi$ . In particular, for typical values of the viscosity-to-entropy ratio, we show that the energy loss obtained using $tau_pi$ = 0 can be $sim$ 10$%$ larger than the one obtained using $tau_pi$ = 0. Moreover, we find that the energy loss obtained using the kinetic theory expression for $tau_pi$ is much larger that the one obtained with the $tau_pi$ derived from the Anti de Sitter/Conformal Field Theory correspondence. Our results may be relevant in the modeling of heavy quark evolution through the quark-gluon plasma.
We revisit the calculation of multiple parton scattering of a heavy quark in nuclei within the framework of recently improved high-twist factorization formalism, in which gauge invariance is ensured by a delicate setup of the initial partons transverse momenta. We derive a new result for medium modified heavy quark fragmentation functions in deeply inelastic scattering. It is consistent with the previous calculation of light quark energy loss in the massless limit, but leads to a new correction term in the heavy quark case, which vanishes in the soft gluon radiation limit. We show numerically the significance of the new correction term in the calculation of heavy quark energy loss as compared to previous studies and with soft gluon radiation approximation.
We develop an effective field theory (EFT) framework to perform an analytic calculation for energy correlator observables computed on groomed heavy-quark jets. A soft-drop grooming algorithm is applied to a jet initiated by a massive quark to minimize soft contamination effects such as pile-up and multi-parton interactions. We specifically consider the two-particle energy correlator as an initial application of this EFT framework to compute heavy quark jet substructure. We find that there are different regimes for the event shapes, depending on the size of the measured correlator observable, that require the use of different EFT formulations, in which the quark mass and grooming parameters may be relevant or not. We use the EFT to resum large logarithms in the energy correlator observable in terms of the momentum of a reconstructed heavy hadron to NLL$$ accuracy and subsequently match it to a full QCD $mathcal{O}(alpha_s)$ cross section, which we also compute. We compare our predictions to simulations in PYTHIA for $e^+e^-$ collisions. We find a good agreement with partonic simulations, as well as hadronic ones with an appropriate shape function used to describe nonperturbative effects and the heavy quark hadron decay turned off. We also predict the scaling behavior for the leading nonperturbative power correction due to hadronization. Consequently, we can give a prediction for the energy correlator distribution at the level of the reconstructed heavy hadron. This work provides a general framework for the analysis of heavy quark jet substructure observables.
82 - Jacopo Ghiglieri 2016
We present an extension of the Arnold-Moore-Yaffe kinetic equations for jet energy loss to NLO in the strong coupling constant. A novel aspect of the NLO analysis is a consistent description of wider-angle bremsstrahlung (semi-collinear emissions), which smoothly interpolates between 2<->2 scattering and collinear bremsstrahlung. We describe how many of the ingredients of the NLO transport equations (such as the drag coefficient) can be expressed in terms of Wilson line operators and can be computed using a Euclidean formalism or sum rules, both motivated by the analytic properties of amplitudes at light-like separations. We conclude with an outlook on the computation of the shear viscosity at NLO.
Quarkonium production in high-energy proton (deuteron)-nucleus collisions is investigated in the color glass condensate framework. We employ the color evaporation model assuming that the quark pair produced from dense small-x gluons in the nuclear target bounds into a quarkonium outside the target. The unintegrated gluon distribution at small Bjorken x in the nuclear target is treated with the Balitsky-Kovchegov equation with running coupling corrections. For the gluons in the proton, we examine two possible descriptions, unintegrated gluon distribution and ordinary collinear gluon distribution. We present the transverse momentum spectrum and nuclear modification factor for J/psi production at RHIC and LHC energies, and those for Upsilon(1S) at LHC energy, and discuss the nuclear modification factor and the momentum broadening by changing the rapidity and the initial saturation scale.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا