Do you want to publish a course? Click here

Entanglement properties of third harmonic generation via direct and cascaded parametric processes

122   0   0.0 ( 0 )
 Added by Murray Olsen Dr
 Publication date 2017
  fields Physics
and research's language is English
 Authors M.K. Olsen




Ask ChatGPT about the research

We compare the bipartite entanglement and EPR-steering properties of the two different schemes which produce third harmonic optical fields from an input field at the fundamental frequency. The first scheme uses second harmonic cascaded with sum-frequency generation while the second uses triply degenerate four-wave mixing, also known as direct third harmonic generation. We examine and compare the two schemes in both the travelling wave and intra-cavity configurations. We find that both schemes produce continuous-variable bipartite entanglement and EPR-steering. The direct scheme produces a greater degree of EPR-steering while the cascaded scheme allows for greater flexibility in having three available bipartitions.



rate research

Read More

In this paper, we demonstrate the generation of high-performance entangled photon-pairs in different degrees of freedom from a single piece of fiber pigtailed periodically poled LiNbO$_3$ (PPLN) waveguide. We utilize cascaded second-order nonlinear optical processes, i.e. second-harmonic generation (SHG) and spontaneous parametric down conversion (SPDC), to generate photon-pairs. Previously, the performance of the photon pairs is contaminated by Raman noise photons from the fiber pigtails. Here by integrating the PPLN waveguide with noise rejecting filters, we obtain a coincidence-to-accidental ratio (CAR) higher than 52,600 with photon-pair generation and detection rate of 52.3 kHz and 3.5 kHz, respectively. Energy-time, frequency-bin and time-bin entanglement is prepared by coherently superposing correlated two-photon states in these degrees of freedom, respectively. The energy-time entangled two-photon states achieve the maximum value of CHSH-Bell inequality of S=2.708$pm$0.024 with a two-photon interference visibility of 95.74$pm$0.86%. The frequency-bin entangled two-photon states achieve fidelity of 97.56$pm$1.79% with a spatial quantum beating visibility of 96.85$pm$2.46%. The time-bin entangled two-photon states achieve the maximum value of CHSH-Bell inequality of S=2.595$pm$0.037 and quantum tomographic fidelity of 89.07$pm$4.35%. Our results provide a potential candidate for quantum light source in quantum photonics.
148 - M.K Olsen 2017
We analyse a nonlinear optical system which uses cascaded nonlinearities to produce both second and fourth harmonic outputs from an input field at the fundamental frequency. Using fully quantum equations of motion, we show that the system produces quadrature squeezed outputs which exhibit bipartite entanglement, EPR-steering, and asymmetric steering across a two octave frequency range.
167 - M.K. Olsen 2017
We analyse the output quantum tripartite correlations from an intracavity nonlinear optical system which uses cascaded nonlinearities to produce both second and fourth harmonic outputs from an input field at the fundamental frequency. Using fully quantum equations of motion, we investigate two parameter regimes and show that the system produces tripartite inseparability, entanglement and EPR steering, with the detection of these depending on the correlations being considered.
It is shown, theoretically and experimentally, that at any type-II spontaneous parametric down-conversion (SPDC) phase matching, the decoherence-free singlet Bell state is always present within the natural bandwidth and can be filtered out by a proper spectral selection. Instead of the frequency selection, one can perform time selection of the two-photon time amplitude at the output of a dispersive fibre. Applications to quantum communication are outlined.
120 - D. Zhang , Y. Cai , Z. Zheng 2020
How to prepare deterministically non-Gaussian entangled states is a fundamental question for continuous-variable quantum information technology. Here, we theoretically demonstrate through numerical methods that the triple-photon state generated by three-photon spontaneous parametric down-conversion is a pure super-Gaussian resource of non-Gaussian entanglement. Interestingly, the degree of entanglement between the modes of the triple-photon state is stronger than that corresponding to the two-mode squeezed vacuum state produced by a quadratic Hamiltonian with the same parameters. Furthermore, we propose a model to prepare two-mode non-Gaussian entangled states with tunable non-Gaussianity based on quadrature projection measurements.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا