No Arabic abstract
We reformulate Super Quantum Mechanics in the context of integral forms. This framework allows to interpolate between different actions for the same theory, connected by different choices of Picture Changing Operators (PCO). In this way we retrieve component and superspace actions, and prove their equivalence. The PCO are closed integral forms, and can be interpreted as super Poincare duals of bosonic submanifolds embedded into a supermanifold.. We use them to construct Lagrangians that are top integral forms, and therefore can be integrated on the whole supermanifold. The $D=1, ~N=1$ and the $D=1,~ N=2$ cases are studied, in a flat and in a curved supermanifold. In this formalism we also consider coupling with gauge fields, Hilbert space of quantum states and observables.
Dyson published in 1990 a proof due to Feynman of the Maxwell equations. This proof is based on the assumption of simple commutation relations between position and velocity. We first study a nonrelativistic particle using Feynman formalism. We show that Poincar{e}s magnetic angular momentum and Dirac magnetic monopole are the direct consequences of the structure of the sO(3) Lie algebra in Feynman formalism. Then we show how to extend this formalism to the dual momentum space with the aim of introducing Noncommutative Quantum Mechanics which was recently the subject of a wide range of works from particle physics to condensed matter physics.
By using integral forms we derive the superspace action of D=3, N=1 supergravity as an integral on a supermanifold. The construction is based on target space picture changing operators, here playing the role of Poincare duals to the lower-dimensional spacetime surfaces embedded into the supermanifold. We show how the group geometrical action based on the group manifold approach interpolates between the superspace and the component supergravity actions, thus providing another proof of their equivalence.
By a series of simple examples, we illustrate how the lack of mathematical concern can readily lead to surprising mathematical contradictions in wave mechanics. The basic mathematical notions allowing for a precise formulation of the theory are then summarized and it is shown how they lead to an elucidation and deeper understanding of the aforementioned problems. After stressing the equivalence between wave mechanics and the other formulations of quantum mechanics, i.e. matrix mechanics and Diracs abstract Hilbert space formulation, we devote the second part of our paper to the latter approach: we discuss the problems and shortcomings of this formalism as well as those of the bra and ket notation introduced by Dirac in this context. In conclusion, we indicate how all of these problems can be solved or at least avoided.
We present different non-perturbative calculations within the context of Migdals representation for the propagator and effective action of quantum particles. We first calculate the exact propagators and effective actions for Dirac, scalar and Proca fields in the presence of constant electromagnetic fields, for an even-dimensional spacetime. Then we derive the propagator for a charged scalar field in a spacelike vortex (i.e., instanton) background, in a long-distance expansion, and the exact propagator for a massless Dirac field in 1+1 dimensions in an arbitrary background. Finally, we present an interpretation of the chiral anomaly in the present context, finding a condition that the paths must fulfil in order to have a non-vanishing anomaly.
We study the effectiveness of the numerical bootstrap techniques recently developed in arXiv:2004.10212 for quantum mechanical systems. We find that for a double well potential the bootstrap method correctly captures non-perturbative aspects. Using this technique we then investigate quantum mechanical potentials related by supersymmetry and recover the expected spectra. Finally, we also study the singlet sector of O(N) vector model quantum mechanics, where we find that the bootstrap method yields results which in the large N agree with saddle point analysis.