Do you want to publish a course? Click here

Water-enhanced interdiffusion of major elements between natural shoshonite and high-K rhyolite melts

54   0   0.0 ( 0 )
 Added by Maurizio Petrelli
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The interdiffusion of six major elements (Si, Ti, Fe, Mg, Ca, K) between natural shoshonite and a high-K calc-alkaline rhyolite (Vulcano island, Aeolian archipelago, Italy) has been experimentally measured by the diffusion couple technique at 1200{deg}C, pressures from 50 to 500 MPa and water contents from 0.3 (nominally dry) to 2 wt%. The experiments were carried out in an internally heated pressure vessel, and major element profiles were later acquired by electron probe microanalysis. The concentration-distance profiles are evaluated using a concentration-dependent diffusivity approach. Effective binary diffusion coefficients for four intermediate silica contents are obtained by the Sauer-Freise modified Boltzmann-Matano method. At the experimental temperature and pressures, the diffusivity of all studied elements notably increases with dissolved H2O content. Particularly, diffusion is up to 1.4 orders of magnitude faster in a melt containing 2 wt.% H2O than in nominally dry melts. This effect is slightly enhanced in the more mafic compositions. Uphill diffusion was observed for Al, while all other elements can be described by the concept of effective binary interdiffusion. Ti is the slowest diffusing element through all experimental conditions and compositions, followed by Si. Fe, Mg, Ca and K diffuse at similar rates but always more rapidly than Si and Ti. This trend suggests a strong coupling between melt components. Since effects of composition (including water content) are dominant, a pressure effect on diffusion cannot be clearly resolved in the experimental pressure range.



rate research

Read More

We present new experimental data on major and trace element partition coefficients between alkali feldspar and trachytic melt. Experiments were conducted at 500 MPa, 870 890 {deg}C to investigate through short disequilibrium and long near equilibrium experiments the influence of diffusive re-equilibration on trace element partitioning during crystallization. Our data show that Ba and Sr behave compatibly, and their partition coefficients are influenced by re-equilibration time, orthoclase (Or) content, growth rate and cation order-disorder. High field strength elements (HFSE) and rare earth elements (except Eu) are strongly incompatible, but alkali feldspar efficiently fractionates light (LREE) from heavy rare earth elements (HREE). Our crystallization experiments reveal a strong influence of disequilibrium crystal growth on the partitioning of Ba and Sr. In particular, short-duration experiments show that rapid alkali feldspar crystal growth after nucleation, promotes disordered growth and less selectivity in the partitioning of compatible trace elements that easily enter the crystal lattice (e.g., Ba and Sr)....
77 - Yi Yang 2017
Reactive infiltration instability (RII) drives the development of many natural and engineered flow systems. These are encountered e.g. in hydraulic fracturing, geologic carbon storage and well stimulation in enhanced oil recovery. The surface area of the rocks changes as the pore structure evolves. We combined a reactor network model with grey scale tomography to seek the morphological interpretation for differences among geometric, reactive and apparent surface areas of dissolving natural porous materials. The approach allowed us to delineate the experimentally convoluted variables and study independently the effects of initial geometry and macroscopic flowrate. Simulations based on North Sea chalk microstructure showed that geometric surface not only serves as the interface for water-rock interactions but also represents the regional transport heterogeneities that can be amplified indefinitely by dissolutive percolation. Hence, RII leads to channelization of the solid matrix, which results in fluid focusing and an increase in geometric surface area. Fluid focusing reduces the reactive surface area and the residence time of reactants, both of which amplify the differences in question, i.e. they are self-supporting. Our results also suggested that the growing and merging of microchannels near the fluid entrance leads to the macroscopic fast initial dissolution of chemically homogeneous materials.
A novel method based on Fast Neutron Resonance Transmission Radiography is proposed for non-destructive, quantitative determination of the weight percentages of oil and water in cores taken from subterranean or underwater geological formations. The ability of the method to distinguish water from oil stems from the unambiguously-specific energy dependence of the neutron cross-sections for the principal elemental constituents. Monte-Carlo simulations and initial results of experimental investigations indicate that the technique may provide a rapid, accurate and non-destructive method for quantitative evaluation of core fluids in thick intact cores, including those of tight shales for which the use of conventional core analytical approaches appears to be questionable.
Experimental microstylolites have been observed at stressed contacts between quartz grains loaded for several weeks in the presence of an aqueous silica solution, at 350 8C and 50 MPa of differential stress. Stereoscopic analysis of pairs of SEM images yielded a digital elevation model of the surface of the microstylolites. Fourier analyses of these microstylolites reveal a self-affine roughness (with a roughness exponent H of 1.2). Coupled with observations of close interactions between dissolution pits and stylolitic peaks, these data illustrate a possible mechanism for stylolite formation. The complex geometry of stylolite surfaces is imposed by the interplay between the development of dissolution peaks in preferential locations (fast dissolution pits) and the mechanical properties of the solid-fluid-solid interfaces. Simple mechanical modeling expresses the crucial competition that could rule the development of microstylolites: (i) a stress-related process, modeled in terms of the stiffness of springs that activate the heterogeneous dissolution rates of the solid interface, promotes the deflection. In parallel, (ii) the strength of the solid interface, modeled in terms of the stiffness of a membrane, is equivalent to a surface tension that limits the deflection and opposes its development. The modeling produces stylolitic surfaces with characteristic geometries varying from conical to columnar when both the effect of dissolution-rate heterogeneity and the strength properties of the rock are taken into account. A self-affine roughness exponent (Hz1.2) measured on modeled surfaces is comparable with natural stylolites at small length scale and experimental microstylolites.
Over the last decade experimental studies have shown a large B isotope fractionation between materials carrying boron incorporated in trigonally and tetrahedrally coordinated sites, but the mechanisms responsible for producing the observed isotopic signatures are poorly known. In order to understand the boron isotope fractionation processes and to obtain a better interpretation of the experimental data and isotopic signatures observed in natural samples, we use first principles calculations based on density functional theory in conjunction with ab initio molecular dynamics and a new pseudofrequency analysis method to investigate the B isotope fractionation between B-bearing minerals (such as tourmaline and micas) and aqueous fluids containing H_3BO_3 and H_4BO_4- species. We confirm the experimental finding that the isotope fractionation is mainly driven by the coordination of the fractionating boron atoms and have found in addition that the strength of the produced isotopic signature is strongly correlated with the B-O bond length. We also demonstrate the ability of our computational scheme to predict the isotopic signatures of fluids at extreme pressures by showing the consistency of computed pressure-dependent beta factors with the measured pressure shifts of the B-O vibrational frequencies of H_3BO_3 and H_4BO_4- in aqueous fluid. The comparison of the predicted with measured fractionation factors between boromuscovite and neutral fluid confirms the existence of the admixture of tetrahedral boron species in neutral fluid at high P and T found experimentally, which also explains the inconsistency between the various measurements on the tourmaline-mica system reported in the literature. Our investigation shows that the calculated equilibrium isotope fractionation factors have an accuracy comparable to the experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا