Do you want to publish a course? Click here

Quantitative discrimination between oil and water in drilled bore cores via fast-neutron resonance transmission radiography

67   0   0.0 ( 0 )
 Added by Amos Breskin
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

A novel method based on Fast Neutron Resonance Transmission Radiography is proposed for non-destructive, quantitative determination of the weight percentages of oil and water in cores taken from subterranean or underwater geological formations. The ability of the method to distinguish water from oil stems from the unambiguously-specific energy dependence of the neutron cross-sections for the principal elemental constituents. Monte-Carlo simulations and initial results of experimental investigations indicate that the technique may provide a rapid, accurate and non-destructive method for quantitative evaluation of core fluids in thick intact cores, including those of tight shales for which the use of conventional core analytical approaches appears to be questionable.



rate research

Read More

A novel method utilizing Fast Neutron Resonance Transmission Radiography is proposed for rapid, non-destructive and quantitative determination of the weight fractions of oil and water in cores taken from subterranean or underwater geological formations. Its ability to distinguish water from oil stems from the unambiguously-specific energy-dependence of the neutron cross-sections for the principal elemental constituents. Furthermore, the fluid weight fractions permit determining core porosity and oil and water saturations. In this article we show results of experimental determination of oil and water weight fractions in 10 cm thick samples of Berea Sandstone and Indiana Limestone formations, followed by calculation of their porosity and fluid saturations. The technique may ultimately permit rapid, accurate and non-destructive evaluation of relevant petro-physical properties in thick intact cores. It is suitable for all types of formations including tight shales, clays and oil sands.
The white neutron beamline at the China Spallation Neutron Source will be used mainly for nuclear data measurements. It will be characterized by high flux and broad energy spectra. To exploit the beamline as a neutron imaging source, we propose a liquid scintillator fiber array for fast neutron resonance radiography. The fiber detector unit has a small exposed area, which will limit the event counts and separate the events in time, thus satisfying the requirements for single-event time-of-flight (SEToF) measurement. The current study addresses the physical design criteria for ToF measurement, including flux estimation and detector response. Future development and potential application of the technology are also discussed.
146 - P.-A. Soderstrom 2008
The basic principles of detection of fast neutrons with liquid scintillator detectors are reviewed, together with a real example in the form of the Neutron Wall array. Two of the challenges in neutron detection, discrimination of neutrons and gamma rays and identification of cross talk between detectors due to neutron scattering, are briefly discussed, as well as possible solutions to these problems. The possibilities of using digital techniques for pulse-shape discrimination are examined. Results from a digital and anal
Discrimination of the detection of fast neutrons and gamma rays in a liquid scintillator detector has been investigated using digital pulse-processing techniques. An experimental setup with a 252Cf source, a BC-501 liquid scintillator detector, and a BaF2 detector was used to collect waveforms with a 100 Ms/s, 14 bit sampling ADC. Three identical ADCs were combined to increase the sampling frequency to 300 Ms/s. Four different digital pulse-shape analysis algorithms were developed and compared to each other and to data obtained with an analogue neutron-gamma discrimination unit. Two of the digital algorithms were based on the charge comparison method, while the analogue unit and the other two digital algorithms were based on the zero-crossover method. Two different figure-of-merit parameters, which quantify the neutron-gamma discrimination properties, were evaluated for all four digital algorithms and for the analogue data set. All of the digital algorithms gave similar or better figure-of-merit values than what was obtained with the analogue setup. A detailed study of the discrimination properties as a function of sampling frequency and bit resolution of the ADC was performed. It was shown that a sampling ADC with a bit resolution of 12 bits and a sampling frequency of 100 Ms/s is adequate for achieving an optimal neutron-gamma discrimination for pulses having a dynamic range for deposited neutron energies of 0.3-12 MeV. An investigation of the influence of the sampling frequency on the time resolution was made. A FWHM of 1.7 ns was obtained at 100 Ms/s.
79 - Q. Riffard 2016
MIMAC (MIcro-TPC MAtrix of Chambers) is a directional WIMP Dark Matter detector project. Direct dark matter experiments need a high level of electron/recoil discrimination to search for nuclear recoils produced by WIMP-nucleus elastic scattering. In this paper, we proposed an original method for electron event rejection based on a multivariate analysis applied to experimental data acquired using monochromatic neutron fields. This analysis shows that a $10^5$ rejection power is reachable for electron/recoil discrimination. Moreover, the efficiency was estimated by a Monte-Carlo simulation showing that a 105 electron rejection power is reached with a $86.49pm 0.17$% nuclear recoil efficiency considering the full energy range and $94.67pm0.19$% considering a 5~keV lower threshold.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا