Do you want to publish a course? Click here

Sensitivity of the Cherenkov Telescope Array to the detection of a dark matter signal in comparison to direct detection and collider experiments

187   0   0.0 ( 0 )
 Added by Manuel Meyer
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Imaging atmospheric Cherenkov telescopes (IACTs) that are sensitive to potential $gamma$-ray signals from dark matter (DM) annihilation above $sim50$ GeV will soon be superseded by the Cherenkov Telescope Array (CTA). CTA will have a point source sensitivity an order of magnitude better than currently operating IACTs and will cover a broad energy range between 20 GeV and 300 TeV. Using effective field theory and simplified models to calculate $gamma$-ray spectra resulting from DM annihilation, we compare the prospects to constrain such models with CTA observations of the Galactic center with current and near-future measurements at the Large Hadron Collider (LHC) and direct detection experiments. For DM annihilations via vector or pseudoscalar couplings, CTA observations will be able to probe DM models out of reach of the LHC, and, if DM is coupled to standard fermions by a pseudoscalar particle, beyond the limits of current direct detection experiments.



rate research

Read More

We provide an updated assessment of the power of the Cherenkov Telescope Array (CTA) to search for thermally produced dark matter at the TeV scale, via the associated gamma-ray signal from pair-annihilating dark matter particles in the region around the Galactic centre. We find that CTA will open a new window of discovery potential, significantly extending the range of robustly testable models given a standard cuspy profile of the dark matter density distribution. Importantly, even for a cored profile, the projected sensitivity of CTA will be sufficient to probe various well-motivated models of thermally produced dark matter at the TeV scale. This is due to CTAs unprecedented sensitivity, angular and energy resolutions, and the planned observational strategy. The survey of the inner Galaxy will cover a much larger region than corresponding previous observational campaigns with imaging atmospheric Cherenkov telescopes. CTA will map with unprecedented precision the large-scale diffuse emission in high-energy gamma rays, constituting a background for dark matter searches for which we adopt state-of-the-art models based on current data. Throughout our analysis, we use up-to-date event reconstruction Monte Carlo tools developed by the CTA consortium, and pay special attention to quantifying the level of instrumental systematic uncertainties, as well as background template systematic errors, required to probe thermally produced dark matter at these energies. Full likelihood tables complementing our analysis are provided here [ https://doi.org/10.5281/zenodo.4057987 ]
High-energy gamma rays are promising tools to constrain or reveal the nature of dark matter, in particular Weakly Interacting Massive Particles. Being well into its pre-construction phase, the Cherenkov Telescope Array (CTA) will soon probe the sky in the 20 GeV - 300 TeV energy range. Thanks to its improved energy and angular resolutions as well as significantly larger effective area when compared to the current generation of Cherenkov telescopes, CTA is expected to probe heavier dark matter, with unprecedented sensitivity, reaching the thermal annihilation cross-section at ~1 TeV. This talk will summarise the planned dark matter search strategies with CTA, focusing on the signal from the Galactic centre. As observed with the Fermi LAT at lower energies, this region is rather complex and CTA will be the first ground-based observatory sensitive to the large scale diffuse astrophysical emission from that region. We report on the collaboration effort to study the impact of such extended astrophysical backgrounds on the dark matter search, based on Fermi-LAT data in order to guide our observational strategies, taking into account various sources of systematic uncertainty.
In the absence of a clear hint of dark matter (DM) signals in the GeV regime so far, heavy, $mathcal{O}$(TeV) DM candidates are gradually earning more and more attention within the community. Among others, extra-dimensional textit{brane-world} models may produce thermal DM candidates with masses up to 100 TeV. These heavy DM candidates could be detected with the next generation of very-high-energy gamma-ray observatories such as the Cherenkov Telescope Array (CTA). In this work, we study the sensitivity of CTA to branon DM via the observation of representative astrophysical DM targets, namely dwarf spheroidal galaxies. In particular, we focus on Draco and Sculptor, two well-known dwarfs visible from the Northern and Southern Hemisphere, respectively. For each of these targets, we simulated 300,h of CTA observations and studied the sensitivity of both CTA-North and CTA-South to branon annihilations using the latest publicly available instrument response functions and most recent analysis tools. We computed annihilation cross section values needed to reach a $5sigma$ detection as a function of the branon mass. Additionally, in the absence of a predicted DM signal, we obtained $2sigma$ upper limits on the annihilation cross section. These limits lie $1.5-2$ orders of magnitude above the thermal relic cross section value, depending on the considered branon mass. Yet, CTA will allow to exclude a significant portion of the brane tension-mass parameter space in the $0.1-60$ TeV branon mass range, and up to tensions of $sim 10$ TeV. More importantly, CTA will significantly enlarge the region already excluded by AMS and CMS, and will provide valuable complementary information to future SKA radio observations. We conclude that CTA will possess potential to constrain brane-world models and, more in general, TeV DM candidates.
132 - F. Iocco , M. Meyer , M. Doro 2021
Astrophysical observations provide strong evidence that more than 80% of all matter in the Universe is in the form of dark matter (DM). Two leading candidates of particles beyond the Standard Model that could constitute all or a fraction of the DM content are the so-called Weakly Interacting Massive Particles (WIMPs) and Axion-Like Particles (ALPs). The upcoming Cherenkov Telescope Array, which will observe gamma rays between 20 GeV and 300 TeV with unprecedented sensitivity, will have unique capabilities to search for these DM candidates. A particularly promising target for WIMP searches is the Galactic Center. WIMPs with annihilation cross sections correctly producing the DM relic density will be detectable with CTA, assuming an Einasto-like density profile and WIMP masses between 200 GeV and 10 TeV. Regarding new physics beyond DM, CTA observations will also enable tests of fundamental symmetries of nature such as Lorentz invariance.
338 - Yao-Yuan Mao 2013
Several direct detection experiments, including recently CDMS-II, have reported signals consistent with 5 to 10 GeV dark matter (DM) that appear to be in tension with null results from XENON and LUX experiments; these indicate a careful review of the theoretical basis, including the galactic DM velocity distribution function (VDF). We establish a VDF parameter space from DM-only cosmological simulations and illustrate that seemingly contradictory experimental results can be made consistent within this parameter space. Future experimental limits should be reported after they are marginalized over a range of VDF parameters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا