Do you want to publish a course? Click here

Electromagnetic vacuum fluctuations around a cosmic string in de Sitter spacetime

115   0   0.0 ( 0 )
 Added by Nvard Saharyan
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The electromagnetic field correlators are evaluated around a cosmic string in background of $(D+1)$-dimensional dS spacetime assuming that the field is prepared in the Bunch-Davies vacuum state. The correlators are presented in the decomposed form where the string-induced topological parts are explicitly extracted. With this decomposition, the renormalization of the local vacuum expectation values (VEVs) in the coincidence limit is reduced to the one for dS spacetime in the absence of the cosmic string. The VEVs of the squared electric and magnetic fields, and of the vacuum energy density are investigated. Near the string they are dominated by the topological contributions and the effects induced by the background gravitational field are small. In this region, the leading terms in the topological contributions are obtained from the corresponding VEVs for a string on the Minkowski bulk multiplying by the conformal factor. At distances from the string larger than the curvature radius of the background geometry, the pure dS parts in the VEVs dominate. In this region, for spatial dimensions $D>3$, the influence of the gravitational field on the topological contributions is crucial and the corresponding behavior is essentially different from that for a cosmic string on the Minkowski bulk. There are well-motivated inflationary models which produce cosmic strings. We argue that, as a consequence of the quantum-to-classical transition of super-Hubble electromagnetic fluctuations during inflation, in the postinflationary era these strings will be surrounded by large scale stochastic magnetic fields. These fields could be among the distinctive features of the cosmic strings produced during the inflation and also of the corresponding inflationary models.



rate research

Read More

We investigate topological effects of a cosmic string and compactification of a spatial dimension on the vacuum expectation value (VEV) of the energy-momentum tensor for a fermionic field in (4+1)-dimensional locally AdS spacetime. The contribution induced by the compactification is explicitly extracted by using the Abel-Plana summation formula. The mean energy-momentum tensor is diagonal and the vacuum stresses along the direction perpendicular to the AdS boundary and along the cosmic string are equal to the energy density. All the components are even periodic functions of the magnetic fluxes inside the string core and enclosed by compact dimension, with the period equal to the flux quantum. The vacuum energy density can be either positive or negative, depending on the values of the parameters and the distance from the string. The topological contributions in the VEV of the energy-momentum tensor vanish on the AdS boundary. Near the string the effects of compactification and gravitational field are weak and the leading term in the asymptotic expansion coincides with the corresponding VEV in (4+1)-dimensional Minkowski spacetime. At large distances, the decay of the cosmic string induced contribution in the vacuum energy-momentum tensor, as a function of the proper distance from the string, follows a power law. For a cosmic string in the Minkowski bulk and for massive fields the corresponding fall off is exponential. Within the framework of the AdS/CFT correspondence, the geometry for conformal field theory on the AdS boundary corresponds to the standard cosmic string in (3+1)-dimensional Minkowski spacetime compactified along its axis.
Complete set of modes and the Hadamard function are constructed for a scalar field inside and outside a sphere in (D+1)-dimensional de Sitter spacetime foliated by negative constant curvature spaces. We assume that the field obeys Robin boundary condition on the sphere. The contributions in the Hadamard function induced by the sphere are explicitly separated and the vacuum expectation values (VEVs) of the field squared and energy-momentum tensor are investigated for the hyperbolic vacuum. In the flat spacetime limit the latter is reduced to the conformal vacuum in the Milne universe and is different from the maximally symmetric Bunch-Davies vacuum state. The vacuum energy-momentum tensor has a nonzero off-diagonal component that describes the energy flux in the radial direction. The latter is a purely sphere-induced effect and is absent in the boundary-free geometry. Depending on the constant in Robin boundary condition and also on the radial coordinate, the energy flux can be directed either from the sphere or towards the sphere. At early stages of the cosmological expansion the effects of the spacetime curvature on the sphere-induced VEVs are weak and the leading terms in the corresponding expansions coincide with those for a sphere in the Milne universe. The influence of the gravitational field is essential at late stages of the expansion. Depending on the field mass and the curvature coupling parameter, the decay of the sphere-induced VEVs, as functions of the time coordinate, is monotonic or damping oscillatory. At large distances from the sphere the fall-off of the sphere-induced VEVs, as functions of the geodesic distance, is exponential for both massless and massive fields.
We report a non-trivial feature of the vacuum structure of free massive or massless Dirac fields in the hyperbolic de Sitter spacetime. Here we have two causally disconnected regions, say $R$ and $L$ separated by another region, $C$. We are interested in the field theory in $Rcup L$ to understand the long range quantum correlations between $R$ and $L$. There are local modes of the Dirac field having supports individually either in $R$ or $L$, as well as global modes found via analytically continuing the $R$ modes to $L$ and vice versa. However, we show that unlike the case of a scalar field, the analytic continuation does not preserve the orthogonality of the resulting global modes. Accordingly, we need to orthonormalise them following the Gram-Schmidt prescription, prior to the field quantisation in order to preserve the canonical anti-commutation relations. We observe that this prescription naturally incorporates a spacetime independent continuous parameter, $theta_{rm RL}$, into the picture. Thus interestingly, we obtain a naturally emerging one-parameter family of $alpha$-like de Sitter vacua. The values of $theta_{rm RL}$ yielding the usual thermal spectra of massless created particles are pointed out. Next, using these vacua, we investigate both entanglement and Renyi entropies of either of the regions and demonstrate their dependence on $theta_{rm RL}$.
In this paper we consider light-cone fluctuations arising as a consequence of the nontrivial topology of the locally flat cosmic string spacetime. By setting the light-cone along the z-direction we are able to develop a full analysis to calculate the renormalized graviton two-point function, as well as the mean square fluctuation in the geodesic interval function and the time delay (or advance) in the propagation of a light-pulse. We found that all these expressions depend upon the parameter characterizing the conical topology of the cosmic string spacetime and vanish in the absence of it. We also point out that at large distances from the cosmic string the mean square fluctuation in the geodesic interval function is extremely small while in the opposite limit it logarithmically increases, improving the signal and thus, making possible the detection of such quantity.
We study the fermionic condensate (FC) and the vacuum expectation value (VEV) of the energy-momentum tensor for a massive spinor field in the de Sitter (dS) spacetime including an ideal cosmic string. In addition, spatial dimension along the string is compactified to a circle of length $L$. The fermionic field is assumed to obey quasi-periodic condition along the $z$-axis. There are also magnetic fluxes running along the cosmic string and enclosed by the compact dimension. Both, the FC and the VEV of the energy-momentum tensor, are decomposed into two parts: one induced by the cosmic string in dS spacetime considering the absence of the compactification, and another one induced by the compactification. In particular, we show that the FC vanishes for a massless fermionic field.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا