No Arabic abstract
Complete set of modes and the Hadamard function are constructed for a scalar field inside and outside a sphere in (D+1)-dimensional de Sitter spacetime foliated by negative constant curvature spaces. We assume that the field obeys Robin boundary condition on the sphere. The contributions in the Hadamard function induced by the sphere are explicitly separated and the vacuum expectation values (VEVs) of the field squared and energy-momentum tensor are investigated for the hyperbolic vacuum. In the flat spacetime limit the latter is reduced to the conformal vacuum in the Milne universe and is different from the maximally symmetric Bunch-Davies vacuum state. The vacuum energy-momentum tensor has a nonzero off-diagonal component that describes the energy flux in the radial direction. The latter is a purely sphere-induced effect and is absent in the boundary-free geometry. Depending on the constant in Robin boundary condition and also on the radial coordinate, the energy flux can be directed either from the sphere or towards the sphere. At early stages of the cosmological expansion the effects of the spacetime curvature on the sphere-induced VEVs are weak and the leading terms in the corresponding expansions coincide with those for a sphere in the Milne universe. The influence of the gravitational field is essential at late stages of the expansion. Depending on the field mass and the curvature coupling parameter, the decay of the sphere-induced VEVs, as functions of the time coordinate, is monotonic or damping oscillatory. At large distances from the sphere the fall-off of the sphere-induced VEVs, as functions of the geodesic distance, is exponential for both massless and massive fields.
We report a non-trivial feature of the vacuum structure of free massive or massless Dirac fields in the hyperbolic de Sitter spacetime. Here we have two causally disconnected regions, say $R$ and $L$ separated by another region, $C$. We are interested in the field theory in $Rcup L$ to understand the long range quantum correlations between $R$ and $L$. There are local modes of the Dirac field having supports individually either in $R$ or $L$, as well as global modes found via analytically continuing the $R$ modes to $L$ and vice versa. However, we show that unlike the case of a scalar field, the analytic continuation does not preserve the orthogonality of the resulting global modes. Accordingly, we need to orthonormalise them following the Gram-Schmidt prescription, prior to the field quantisation in order to preserve the canonical anti-commutation relations. We observe that this prescription naturally incorporates a spacetime independent continuous parameter, $theta_{rm RL}$, into the picture. Thus interestingly, we obtain a naturally emerging one-parameter family of $alpha$-like de Sitter vacua. The values of $theta_{rm RL}$ yielding the usual thermal spectra of massless created particles are pointed out. Next, using these vacua, we investigate both entanglement and Renyi entropies of either of the regions and demonstrate their dependence on $theta_{rm RL}$.
The electromagnetic field correlators are evaluated around a cosmic string in background of $(D+1)$-dimensional dS spacetime assuming that the field is prepared in the Bunch-Davies vacuum state. The correlators are presented in the decomposed form where the string-induced topological parts are explicitly extracted. With this decomposition, the renormalization of the local vacuum expectation values (VEVs) in the coincidence limit is reduced to the one for dS spacetime in the absence of the cosmic string. The VEVs of the squared electric and magnetic fields, and of the vacuum energy density are investigated. Near the string they are dominated by the topological contributions and the effects induced by the background gravitational field are small. In this region, the leading terms in the topological contributions are obtained from the corresponding VEVs for a string on the Minkowski bulk multiplying by the conformal factor. At distances from the string larger than the curvature radius of the background geometry, the pure dS parts in the VEVs dominate. In this region, for spatial dimensions $D>3$, the influence of the gravitational field on the topological contributions is crucial and the corresponding behavior is essentially different from that for a cosmic string on the Minkowski bulk. There are well-motivated inflationary models which produce cosmic strings. We argue that, as a consequence of the quantum-to-classical transition of super-Hubble electromagnetic fluctuations during inflation, in the postinflationary era these strings will be surrounded by large scale stochastic magnetic fields. These fields could be among the distinctive features of the cosmic strings produced during the inflation and also of the corresponding inflationary models.
The influence of a spherical boundary on the vacuum fluctuations of a massive scalar field is investigated in background of $(D+1)$-dimensional Milne universe, assuming that the field obeys Robin boundary condition on the sphere. The normalized mode functions are derived for the regions inside and outside the sphere and different vacuum states are discussed. For the conformal vacuum, the Hadamard function is decomposed into boundary-free and sphere-induced contributions and an integral representation is obtained for the latter in both the interior and exterior regions. As important local characteristics of the vacuum state the vacuum expectation values (VEVs) of the field squared and of the energy-momentum tensor are investigated. It is shown that the vacuum energy-momentum tensor has an off-diagonal component that corresponds to the energy flux along the radial direction. Depending on the coefficient in Robin boundary condition the sphere-induced contribution to the vacuum energy and the energy flux can be either positive or negative. At late stages of the expansion and for a massive field the decay of the sphere-induced VEVs, as functions of time, is damping oscillatory. The geometry under consideration is conformally related to that for a static spacetime with negative constant curvature space and the sphere-induced contributions in the corresponding VEVs are compared.
We study the vacuum polarisation effects of the Dirac fermionic field induced by a pointlike global monopole located in the cosmological de Sitter spacetime. First we derive the four orthonormal Dirac modes in this background. Using these modes, we then compute the fermionic condensate, $langle 0| overline{Psi} Psi | 0rangle$, as well as the vacuum expectation value of the energy-momentum tensor for a massive Dirac field. We have used the Abel-Plana summation formula in order to extract the pure global monopole contribution to these quantities and have investigated their variations numerically with respect to suitable parameters. Also in particular, by taking the massless limit for the components of the energy-momentum tensor we show that the global monopole cannot induce any contribution to the trace anomaly.
We investigate the quantum radiation emitted by a uniformly accelerated Unruh-DeWitt detector in de Sitter spacetime. We find that there exists a non-vanishing quantum radiation at late times in the radiation zone of the conformally flat coordinates, which cover the region behind the cosmological horizon for the accelerated detector. The theoretical structure of producing the late-time quantum radiation is similar to that of the same model in Minkowski spacetime: it comes from a nonlocal correlation of the quantum field in the Bunch-Davies vacuum state, which can be traced back to the entanglement between the field modes defined in different regions in de Sitter spacetime.