Do you want to publish a course? Click here

Streaming Bayesian inference: theoretical limits and mini-batch approximate message-passing

80   0   0.0 ( 0 )
 Added by Andre Manoel
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

In statistical learning for real-world large-scale data problems, one must often resort to streaming algorithms which operate sequentially on small batches of data. In this work, we present an analysis of the information-theoretic limits of mini-batch inference in the context of generalized linear models and low-rank matrix factorization. In a controlled Bayes-optimal setting, we characterize the optimal performance and phase transitions as a function of mini-batch size. We base part of our results on a detailed analysis of a mini-batch version of the approximate message-passing algorithm (Mini-AMP), which we introduce. Additionally, we show that this theoretical optimality carries over into real-data problems by illustrating that Mini-AMP is competitive with standard streaming algorithms for clustering.



rate research

Read More

178 - Man Luo , Qinghua Guo , Ming Jin 2021
Sparse Bayesian learning (SBL) can be implemented with low complexity based on the approximate message passing (AMP) algorithm. However, it does not work well for a generic measurement matrix, which may cause AMP to diverge. Damped AMP has been used for SBL to alleviate the problem at the cost of reducing convergence speed. In this work, we propose a new SBL algorithm based on structured variational inference, leveraging AMP with a unitary transformation (UAMP). Both single measurement vector and multiple measurement vector problems are investigated. It is shown that, compared to state-of-the-art AMP-based SBL algorithms, the proposed UAMP-SBL is more robust and efficient, leading to remarkably better performance.
Approximate message passing (AMP) is a low-cost iterative parameter-estimation technique for certain high-dimensional linear systems with non-Gaussian distributions. However, AMP only applies to independent identically distributed (IID) transform matrices, but may become unreliable for other matrix ensembles, especially for ill-conditioned ones. To handle this difficulty, orthogonal/vector AMP (OAMP/VAMP) was proposed for general right-unitarily-invariant matrices. However, the Bayes-optimal OAMP/VAMP requires high-complexity linear minimum mean square error estimator. To solve the disadvantages of AMP and OAMP/VAMP, this paper proposes a memory AMP (MAMP), in which a long-memory matched filter is proposed for interference suppression. The complexity of MAMP is comparable to AMP. The asymptotic Gaussianity of estimation errors in MAMP is guaranteed by the orthogonality principle. A state evolution is derived to asymptotically characterize the performance of MAMP. Based on the state evolution, the relaxation parameters and damping vector in MAMP are optimized. For all right-unitarily-invariant matrices, the optimized MAMP converges to OAMP/VAMP, and thus is Bayes-optimal if it has a unique fixed point. Finally, simulations are provided to verify the validity and accuracy of the theoretical results.
We study batch normalisation in the context of variational inference methods in Bayesian neural networks, such as mean-field or MC Dropout. We show that batch-normalisation does not affect the optimum of the evidence lower bound (ELBO). Furthermore, we study the Monte Carlo Batch Normalisation (MCBN) algorithm, proposed as an approximate inference technique parallel to MC Dropout, and show that for larger batch sizes, MCBN fails to capture epistemic uncertainty. Finally, we provide insights into what is required to fix this failure, namely having to view the mini-batch size as a variational parameter in MCBN. We comment on the asymptotics of the ELBO with respect to this variational parameter, showing that as dataset size increases towards infinity, the batch-size must increase towards infinity as well for MCBN to be a valid approximate inference technique.
We study the problem of estimating a rank-$1$ signal in the presence of rotationally invariant noise-a class of perturbations more general than Gaussian noise. Principal Component Analysis (PCA) provides a natural estimator, and sharp results on its performance have been obtained in the high-dimensional regime. Recently, an Approximate Message Passing (AMP) algorithm has been proposed as an alternative estimator with the potential to improve the accuracy of PCA. However, the existing analysis of AMP requires an initialization that is both correlated with the signal and independent of the noise, which is often unrealistic in practice. In this work, we combine the two methods, and propose to initialize AMP with PCA. Our main result is a rigorous asymptotic characterization of the performance of this estimator. Both the AMP algorithm and its analysis differ from those previously derived in the Gaussian setting: at every iteration, our AMP algorithm requires a specific term to account for PCA initialization, while in the Gaussian case, PCA initialization affects only the first iteration of AMP. The proof is based on a two-phase artificial AMP that first approximates the PCA estimator and then mimics the true AMP. Our numerical simulations show an excellent agreement between AMP results and theoretical predictions, and suggest an interesting open direction on achieving Bayes-optimal performance.
We consider the problem of estimating a signal from measurements obtained via a generalized linear model. We focus on estimators based on approximate message passing (AMP), a family of iterative algorithms with many appealing features: the performance of AMP in the high-dimensional limit can be succinctly characterized under suitable model assumptions; AMP can also be tailored to the empirical distribution of the signal entries, and for a wide class of estimation problems, AMP is conjectured to be optimal among all polynomial-time algorithms. However, a major issue of AMP is that in many models (such as phase retrieval), it requires an initialization correlated with the ground-truth signal and independent from the measurement matrix. Assuming that such an initialization is available is typically not realistic. In this paper, we solve this problem by proposing an AMP algorithm initialized with a spectral estimator. With such an initialization, the standard AMP analysis fails since the spectral estimator depends in a complicated way on the design matrix. Our main contribution is a rigorous characterization of the performance of AMP with spectral initialization in the high-dimensional limit. The key technical idea is to define and analyze a two-phase artificial AMP algorithm that first produces the spectral estimator, and then closely approximates the iterates of the true AMP. We also provide numerical results that demonstrate the validity of the proposed approach.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا