Do you want to publish a course? Click here

$H$-$T$ phase diagram of solid oxygen

82   0   0.0 ( 0 )
 Added by Toshihiro Nomura
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Comprehensive magnetic-field-temperature ($H$-$T$) phase diagram of solid oxygen including the $theta$ phase is discussed in the context of the ultrahigh-field measurement and the magnetocaloric effect (MCE) measurement. The problems originating from the short duration of the pulse field, non-equilibrium condition and MCEs, are pointed out and dealt with. The obtained phase diagram manifests the entropy relation between the phases as $S_theta sim S_alpha<S_beta<<S_gamma$.



rate research

Read More

Thermoelectric energy conversion - the exploitation of the Seebeck effect to convert waste heat into electricity - has attracted an increasing amount of research attention for energy harvesting technology. Niobium-doped strontium titanate (SrTi1-xNbxO3) is one of the most promising thermoelectric material candidates, particularly as it poses a much lesser environmental risk in comparison to materials based on heavy metal elements. Two-dimensional electron confinement, e.g. through the formation of superlattices or two-dimensional electron gases, is recognized as an effective strategy to improve the thermoelectric performance of SrTi1-xNbxO3. Although electron confinement is closely related to the electronic structure, the fundamental electronic phase behavior of the SrTi1-xNbxO3 solid solution system has yet to be comprehensively investigated. Here, we present a thermoelectric phase diagram for the SrTi1-xNbxO3 (0.05 =< x =< 1) solid solution system, which we derived from the characterization of epitaxial films. We observed two thermoelectric phase boundaries in the system, which originate from the step-like decrease in carrier effective mass at x ~ 0.3, and from a local minimum in carrier relaxation time at x ~ 0.5. The origins of these phase boundaries are considered to be related to isovalent/heterovalent B-site substitution: parabolic Ti 3d orbitals dominate electron conduction for compositions with x < 0.3, whereas the Nb 4d orbital dominates when x > 0.3. At x ~ 0.5, a tetragonal distortion of the lattice, in which the B-site is composed of Ti4+ and Nb4+ ions, leads to the formation of tail-like impurity bands, which maximizes the electron scattering. These results provide a foundation for further research into improving the thermoelectric performance of SrTi1-xNbxO3.
We have measured the magnetization and specific heat of multiferroic CoCr2O4 in magnetic fields up to 14 T. The high-field magnetization measurements indicate a new phase transition at T* = 5 - 6 K. The phase between T* and the lock-in transition at 15 K is characterized by magnetic irreversibility. At higher magnetic fields, the irreversibility increases. Specific-heat measurements confirm the transition at T*, and also show irreversible behavior. We construct a field-temperature phase diagram of CoCr2O4.
In-field DC and AC magnetization measurements were carried out on a sigma-phase Fe55Re45 intermetallic compound aimed at determination of the magnetic phase diagram in the H-T plane. Field cooled, M_FC, and zero-field cooled, M_ZFC, DC magnetization curves were measured in the magnetic field, H, up to 1200 Oe. AC magnetic susceptibility measurements were carried out at a constant frequency of 1465 Hz under DC fields up to H=500 Oe. The obtained results provide evidences for re-entrant magnetism in the investigated sample. The magnetic phase diagrams in the H-T plane have been outlined based on characteristic temperatures determined from the DC and AC measurements. The phase diagrams are similar yet not identical. The main difference is that in the DC diagram constructed there are two cross-over transitions within the strong-irreversibility spin-glass state, whereas in the AC susceptibility based diagram only one transition is observed. The border lines (irreversibility, cross-over) can be described in terms of the power laws.
In quasi-2D quantum magnets the ratio of Neel temperature $T_text N$ to Curie-Weiss temperature $Theta_text{CW}$ is frequently used as an empirical criterion to judge the strength of frustration. In this work we investigate how these quantities are related in the canonical quasi-2D frustrated square or triangular $J_1$-$J_2$ model. Using the self-consistent Tyablikov approach for calculating $T_text N$ we show their dependence on the frustration control parameter $J_2/J_1$ in the whole Neel and columnar antiferromagnetic phase region. We also discuss approximate analytical results. In addition the field dependence of $T_text N(H)$ and the associated possible reentrance behavior of the ordered moment due to quantum fluctuations is investigated. These results are directly applicable to a class of quasi-2D oxovanadate antiferromagnets. We give clear criteria to judge under which conditions the empirical frustration ratio $f=Theta_text{CW}/T_text N$ may be used as measure of frustration strength in the quasi-2D quantum magnets.
Establishing the phase diagram of hydrogen is a major challenge for experimental and theoretical physics. Experiment alone cannot establish the atomic structure of solid hydrogen at high pressure, because hydrogen scatters X-rays only weakly. Instead our understanding of the atomic structure is largely based on density functional theory (DFT). By comparing Raman spectra for low-energy structures found in DFT searches with experimental spectra, candidate atomic structures have been identified for each experimentally observed phase. Unfortunately, DFT predicts a metallic structure to be energetically favoured at a broad range of pressures up to 400 GPa, where it is known experimentally that hydrogen is nonmetallic. Here we show that more advanced theoretical methods (diffusion quantum Monte Carlo calculations) find the metallic structure to be uncompetitive, and predict a phase diagram in reasonable agreement with experiment. This greatly strengthens the claim that the candidate atomic structures accurately model the experimentally observed phases.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا