Do you want to publish a course? Click here

Magnetic phase diagram of sigma-phase Fe55Re45 compound in the H-T coordinates

66   0   0.0 ( 0 )
 Added by Stanislaw Dubiel
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In-field DC and AC magnetization measurements were carried out on a sigma-phase Fe55Re45 intermetallic compound aimed at determination of the magnetic phase diagram in the H-T plane. Field cooled, M_FC, and zero-field cooled, M_ZFC, DC magnetization curves were measured in the magnetic field, H, up to 1200 Oe. AC magnetic susceptibility measurements were carried out at a constant frequency of 1465 Hz under DC fields up to H=500 Oe. The obtained results provide evidences for re-entrant magnetism in the investigated sample. The magnetic phase diagrams in the H-T plane have been outlined based on characteristic temperatures determined from the DC and AC measurements. The phase diagrams are similar yet not identical. The main difference is that in the DC diagram constructed there are two cross-over transitions within the strong-irreversibility spin-glass state, whereas in the AC susceptibility based diagram only one transition is observed. The border lines (irreversibility, cross-over) can be described in terms of the power laws.



rate research

Read More

Magnetization measurements were carried out in the in field-cooled (FC) and in zero-field-cooled (ZFC) conditions versus temperature, T, and external magnetic field, H, on a sigma-phase Fe47Mo53 compound. Analysis of the measured M_FC and M_ZFC curves yielded values of characteristic temperatures: magnetic ordering (Curie) temperature, T_C, irreversibility temperature, T_ir, temperature of the maximum in M_ZFC, T_m, identified as the N.eel (T_N) temperature, and cross-over temperature, T_co. Based on these temperatures a magnetic phase diagram in the H-T plane was outlined. The field dependences of the characteristic temperatures viz. of the irreversibility and of the cross-over temperatures were described in terms of a power law with the exponent 0.5(1). In the whole range of H i.e. up to 800 Oe, except the one H>50 Oe, a rare double re-entrant transition viz. PM-FM-AF-SG takes place. For small fields i.e. H<50 Oe a single re-entrant transition viz. PM-FM-SG is revealed.
252 - M. Balanda , S. M. Dubiel 2017
A C14 Nb0.975Fe2.025 Laves phase compound was investigated aimed at determining the H-T magnetic phase diagram. Magnetization, M, and AC magnetic susceptibility measurements were performed. Concerning the former field-cooled and zero-field-cooled M-curves were recorded in the temperature range of 2-200K and in applied magnetic field, H, up to 1000 Oe, isothermal M(H) curves at 2 K, 5 K, 50 K, 80 K and 110 K as well as hysteresis loops at several temperatures over the field range of -10 to +10kOe. Regarding the AC susceptibility, both real and imaginary components were registered as a function of increasing temperature in the interval of 2 K - 150 K at the frequencies of the oscillating field, f, from 3 Hz up to 999 Hz. An influence of the external DC magnetic field, H, on the temperature dependence of the AC susceptibility was investigated, too. The measurements clearly demonstrated that the magnetism of the studied sample is weak, itinerant and has a reentrant character. Based on the obtained results a magnetic phase diagram has been constructed in the H-T coordinates.
57 - M. Sikora , S. M. Dubiel 2016
Magnetization measurements were performed on two sigma-phase samples of Fe(100-x)V(x) (x=35.5, 34.1) vs. temperature, T, and in DC magnetic field, of various amplitudes. Using three characteristic temperatures, magnetic phase diagrams in the H-T plane have been designed testifying to a re-entrant character of magnetism. The ground magnetic state, a spin glass (SG), was evidenced to be composed of two sub phases: one with a weak irreversibility and the other with a strong irreversibility. Two critical lines were reconstructed within the SG state. Both of them show a crossover from the Gabay-Toulouse behavior (low field) to a linear and/or quasi-Almeida-Touless behavior. A strong difference in the effect of the applied magnetic field on the SG phase in the two samples was revealed.
Mn3V2O8 is a magnetic system in which S = 5/2 Mn2+ is found in the kagome staircase lattice. Here we report the magnetic phase diagram for temperatures above 2 K and applied magnetic fields below 9 T, characterized by measurements of the magnetization and specific heat with field along the three unique lattice directions. At low applied magnetic fields, the system first orders magnetically below Tm1 ~ 21 K, and then shows a second magnetic phase transition at Tm2 ~ 15 K. In addition, a phase transition that is apparent in specific heat but not seen in magnetization is found for all three applied field orientations, converging towards Tm2 as H -> 0. The magnetic behavior is highly anisotropic, with critical fields for magnetic phase boundaries much higher when the field is applied perpendicular to the Kagome staircase plane than when applied in-plane. The field-temperature (H - T) phase diagrams are quite rich, with 7 distinct phases observed.
The magnetic phase diagram in the H-T coordinates has been determined for {sigma}-Fe68V32 from the ZFC/FC magnetization measurements. The re-entrant character of magnetism, going from paramagnetic through ferromagnetic to spin-glass (SG) states, has been evidenced. The SG phase is magnetically heterogeneous, because two sub phases can be identified i.e. with the strong (SG-SI) and the weak (SG-WI) irreversibility. The ireversibility, T_irr and the crossover, T_cros, temperatures were quantitatively analysed using the mean-field theory and {phi}_irr=1.6(2) and {phi}_cros=0.91(9) values were obtained. A qualitative agreement with the Gabay-Toulouse model was reached. The isothermal magnetization measurements point to a soft magnetic behaviour of the studied sample. The {gamma} critical exponent was determined with the Kouvel-Fisher approach yielding the value of {gamma}=1.0(1) in line with the mean-field theory.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا