Do you want to publish a course? Click here

Internal Structure of Giant and Icy Planets: Importance of Heavy Elements and Mixing

143   0   0.0 ( 0 )
 Added by Ravit Helled
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this chapter we summarize current knowledge of the internal structure of giant planets. We concentrate on the importance of heavy elements and their role in determining the planetary composition and internal structure, in planet formation, and during the planetary long-term evolution. We briefly discuss how internal structure models are derived, present the possible structures of the outer planets in the Solar System, and summarise giant planet formation and evolution. Finally, we introduce giant exoplanets and discuss how they can be used to better understand giant planets as a class of planetary objects.



rate research

Read More

Water content and the internal evolution of terrestrial planets and icy bodies are closely linked. The distribution of water in planetary systems is controlled by the temperature structure in the protoplanetary disk and dynamics and migration of planetesimals and planetary embryos. This results in the formation of planetesimals and planetary embryos with a great variety of compositions, water contents and degrees of oxidation. The internal evolution and especially the formation time of planetesimals relative to the timescale of radiogenic heating by short-lived 26Al decay may govern the amount of hydrous silicates and leftover rock-ice mixtures available in the late stages of their evolution. In turn, water content may affect the early internal evolution of the planetesimals and in particular metal-silicate separation processes. Moreover, water content may contribute to an increase of oxygen fugacity and thus affect the concentrations of siderophile elements within the silicate reservoirs of Solar System objects. Finally, the water content strongly influences the differentiation rate of the icy moons, controls their internal evolution and governs the alteration processes occurring in their deep interiors.
We consider the origin of compact, short-period, Jupiter-mass planets. We propose that their diverse structure is caused by giant impacts of embryos and super-Earths or mergers with other gas giants during the formation and evolution of these hot Jupiters. Through a series of numerical simulations, we show that typical head-on collisions generally lead to total coalescence of impinging gas giants. Although extremely energetic collisions can disintegrate the envelope of gas giants, these events seldom occur. During oblique and moderately energetic collisions, the merger products retain higher fraction of the colliders cores than their envelopes. They can also deposit considerable amount of spin angular momentum to the gas giants and desynchronize their spins from their orbital mean motion. We find that the oblateness of gas giants can be used to infer the impact history. Subsequent dissipation of stellar tide inside the planets envelope can lead to runaway inflation and potentially a substantial loss of gas through Roche-lobe overflow. The impact of super-Earths on parabolic orbits can also enlarge gas giant planets envelope and elevates their tidal dissipation rate over $sim $ 100 Myr time scale. Since giant impacts occur stochastically with a range of impactor sizes and energies, their diverse outcomes may account for the dispersion in the mass-radius relationship of hot Jupiters.
We perform a suite of smoothed particle hydrodynamics simulations to investigate in detail the results of a giant impact on the young Uranus. We study the internal structure, rotation rate, and atmospheric retention of the post-impact planet, as well as the composition of material ejected into orbit. Most of the material from the impactors rocky core falls in to the core of the target. However, for higher angular momentum impacts, significant amounts become embedded anisotropically as lumps in the ice layer. Furthermore, most of the impactors ice and energy is deposited in a hot, high-entropy shell at a radius of ~3 Earth radii. This could explain Uranus observed lack of heat flow from the interior and be relevant for understanding its asymmetric magnetic field. We verify the results from the single previous study of lower resolution simulations that an impactor with a mass of at least 2 Earth masses can produce sufficiently rapid rotation in the post-impact Uranus for a range of angular momenta. At least 90% of the atmosphere remains bound to the final planet after the collision, but over half can be ejected beyond the Roche radius by a 2 or 3 Earth mass impactor. This atmospheric erosion peaks for intermediate impactor angular momenta (~3*10^36 kg m^2 s^-1). Rock is more efficiently placed into orbit and made available for satellite formation by 2 Earth mass impactors than 3 Earth mass ones, because it requires tidal disruption that is suppressed by the more massive impactors.
112 - James Guillochon 2010
The discovery of Jupiter-mass planets in close orbits about their parent stars has challenged models of planet formation. Recent observations have shown that a number of these planets have highly inclined, sometimes retrograde orbits about their parent stars, prompting much speculation as to their origin. It is known that migration alone cannot account for the observed population of these misaligned hot Jupiters, which suggests that dynamical processes after the gas disc dissipates play a substantial role in yielding the observed inclination and eccentricity distributions. One particularly promising candidate is planet-planet scattering, which is not very well understood in the non-linear regime of tides. Through three-dimensional hydrodynamical simulations of multi-orbit encounters, we show that planets that are scattered into an orbit about their parent stars with closest approach distance being less than approximately three times the tidal radius are either destroyed or completely ejected from the system. We find that as few as 5 and as many as 18 of the currently known hot Jupiters have a maximum initial apastron for scattering that lies well within the ice line, implying that these planets must have migrated either before or after the scattering event that brought them to their current positions. If stellar tides are unimportant $(Q_ast gtrsim 10^7)$, disk migration is required to explain the existence of the hot Jupiters present in these systems. Additionally, we find that the disruption and/or ejection of Jupiter-mass planets deposits a Suns worth of angular momentum onto the host star. For systems in which planet-planet scattering is common, we predict that planetary hosts have up to a 35% chance of possessing an obliquity relative to the invariable plane of greater than 90 degrees.
Planetary formation models predict the existence of massive terrestrial planets and experiments are now being designed that should succeed in discovering them and measuring their masses and radii. We calculate internal structures of planets with one to ten times the mass of the Earth (Super-Earths) in order to obtain scaling laws for total radius, mantle thickness, core size and average density as a function of mass. We explore different compositions and obtain a scaling law of $Rpropto M^{0.267-0.272}$ for Super-Earths. We also study a second family of planets, Super-Mercuries with masses ranging from one mercury-mass to ten mercury-masses with similar composition to the Earths but larger core mass fraction. We explore the effect of surface temperature and core mass fraction on the scaling laws for these planets. The scaling law obtained for the Super-Mercuries is $Rpropto M^{sim0.3}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا