Do you want to publish a course? Click here

Hyperelliptic Curves with Maximal Galois Action on the Torsion Points of their Jacobians

301   0   0.0 ( 0 )
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

In this article, we show that in each of four standard families of hyperelliptic curves, there is a density-$1$ subset of members with the property that their Jacobians have adelic Galois representation with image as large as possible. This result constitutes an explicit application of a general theorem on arbitrary rational families of abelian varieties to the case of families of Jacobians of hyperelliptic curves. Furthermore, we provide explicit examples of hyperelliptic curves of genus $2$ and $3$ over $mathbb Q$ whose Jacobians have such maximal adelic Galois representations.



rate research

Read More

106 - Ke Chen , Xin Lu , Kang Zuo 2016
In this paper we study the Coleman-Oort conjecture for superelliptic curves, i.e., curves defined by affine equations $y^n=F(x)$ with $F$ a separable polynomial. We prove that up to isomorphism there are at most finitely many superelliptic curves of fixed genus $ggeq 8$ with CM Jacobians. The proof relies on the geometric structures of Shimura subvarieties in Siegel modular varieties and the stability properties of Higgs bundles associated to fibred surfaces.
93 - Yuri G. Zarhin 2021
Let $K$ be a field of characteristic different from $2$, $bar{K}$ its algebraic closure. Let $n ge 3$ be an odd prime such that $2$ is a primitive root modulo $n$. Let $f(x)$ and $h(x)$ be degree $n$ polynomials with coefficients in $K$ and without repeated roots. Let us consider genus $(n-1)/2$ hyperelliptic curves $C_f: y^2=f(x)$ and $C_h: y^2=h(x)$, and their jacobians $J(C_f)$ and $J(C_h)$, which are $(n-1)/2$-dimensional abelian varieties defined over $K$. Suppose that one of the polynomials is irreducible and the other reducible. We prove that if $J(C_f)$ and $J(C_h)$ are isogenous over $bar{K}$ then both jacobians are abelian varieties of CM type with multiplication by the field of $n$th roots of $1$.
Let $C$ be a hyperelliptic curve of genus $g>1$ over an algebraically closed field $K$ of characteristic zero and $O$ one of the $(2g+2)$ Weierstrass points in $C(K)$. Let $J$ be the jacobian of $C$, which is a $g$-dimensional abelian variety over $K$. Let us consider the canonical embedding of $C$ into $J$ that sends $O$ to the zero of the group law on $J$. This embedding allows us to identify $C(K)$ with a certain subset of the commutative group $J(K)$. A special case of the famous theorem of Raynaud (Manin--Mumford conjecture) asserts that the set of torsion points in $C(K)$ is finite. It is well known that the points of order 2 in $C(K)$ are exactly the remaining $(2g+1)$ Weierstrass points. One of the authors proved that there are no torsion points of order $n$ in $C(K)$ if $3le nle 2g$. So, it is natural to study torsion points of order $2g+1$ (notice that the number of such points in $C(K)$ is always even). Recently, the authors proved that there are infinitely many (for a given $g$) mutually nonisomorphic pairs $C,O)$ such that $C(K)$ contains at least four points of order $2g+1$. In the present paper we prove that (for a given $g$) there are at most finitely many (up to a isomorphism) pairs $(C,O)$ such that $C(K)$ contains at least six points of order $2g+1$.
121 - Rod Gow , Gary McGuire 2021
Let $F$ be any field. We give a short and elementary proof that any finite subgroup $G$ of $PGL(2,F)$ occurs as a Galois group over the function field $F(x)$. We also develop a theory of descent to subfields of $F$. This enables us to realize the automorphism groups of finite subgroups of $PGL(2,F)$ as Galois groups.
113 - Jia-Wei Guo , Yifan Yang 2015
By constructing suitable Borcherds forms on Shimura curves and using Schofers formula for norms of values of Borcherds forms at CM-points, we determine all the equations of hyperelliptic Shimura curves $X_0^D(N)$. As a byproduct, we also address the problem of whether a modular form on Shimura curves $X_0^D(N)/W_{D,N}$ with a divisor supported on CM-divisors can be realized as a Borcherds form, where $X_0^D(N)/W_{D,N}$ denotes the quotient of $X_0^D(N)$ by all the Atkin-Lehner involutions. The construction of Borcherds forms is done by solving certain integer programming problems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا