Do you want to publish a course? Click here

Vehicle Traffic Driven Camera Placement for Better Metropolis Security Surveillance

368   0   0.0 ( 0 )
 Added by Yihui He
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Security surveillance is one of the most important issues in smart cities, especially in an era of terrorism. Deploying a number of (video) cameras is a common surveillance approach. Given the never-ending power offered by vehicles to metropolises, exploiting vehicle traffic to design camera placement strategies could potentially facilitate security surveillance. This article constitutes the first effort toward building the linkage between vehicle traffic and security surveillance, which is a critical problem for smart cities. We expect our study could influence the decision making of surveillance camera placement, and foster more research of principled ways of security surveillance beneficial to our physical-world life. Code has been made publicly available.



rate research

Read More

86 - Elizabeth Bondi 2017
Beyond traditional security methods, unmanned aerial vehicles (UAVs) have become an important surveillance tool used in security domains to collect the required annotated data. However, collecting annotated data from videos taken by UAVs efficiently, and using these data to build datasets that can be used for learning payoffs or adversary behaviors in game-theoretic approaches and security applications, is an under-explored research question. This paper presents VIOLA, a novel labeling application that includes (i) a workload distribution framework to efficiently gather human labels from videos in a secured manner; (ii) a software interface with features designed for labeling videos taken by UAVs in the domain of wildlife security. We also present the evolution of VIOLA and analyze how the changes made in the development process relate to the efficiency of labeling, including when seemingly obvious improvements did not lead to increased efficiency. VIOLA enables collecting massive amounts of data with detailed information from challenging security videos such as those collected aboard UAVs for wildlife security. VIOLA will lead to the development of new approaches that integrate deep learning for real-time detection and response.
We model the behavioral biases of human decision-making in securing interdependent systems and show that such behavioral decision-making leads to a suboptimal pattern of resource allocation compared to non-behavioral (rational) decision-making. We provide empirical evidence for the existence of such behavioral bias model through a controlled subject study with 145 participants. We then propose three learning techniques for enhancing decision-making in multi-round setups. We illustrate the benefits of our decision-making model through multiple interdependent real-world systems and quantify the level of gain compared to the case in which the defenders are behavioral. We also show the benefit of our learning techniques against different attack models. We identify the effects of different system parameters on the degree of suboptimality of security outcomes due to behavioral decision-making.
Traffic violations like illegal parking, illegal turning, and speeding have become one of the greatest challenges in urban transportation systems, bringing potential risks of traffic congestions, vehicle accidents, and parking difficulties. To maximize the utility and effectiveness of the traffic enforcement strategies aiming at reducing traffic violations, it is essential for urban authorities to infer the traffic violation-prone locations in the city. Therefore, we propose a low-cost, comprehensive, and dynamic framework to infer traffic violation-prone locations in cities based on the large-scale vehicle trajectory data and road environment data. Firstly, we normalize the trajectory data by map matching algorithms and extract key driving behaviors, i.e., turning behaviors, parking behaviors, and speeds of vehicles. Secondly, we restore spatiotemporal contexts of driving behaviors to get corresponding traffic restrictions such as no parking, no turning, and speed restrictions. After matching the traffic restrictions with driving behaviors, we get the traffic violation distribution. Finally, we extract the spatiotemporal patterns of traffic violations, and build a visualization system to showcase the inferred traffic violation-prone locations. To evaluate the effectiveness of the proposed method, we conduct extensive studies on large-scale, real-world vehicle GPS trajectories collected from two Chinese cities, respectively. Evaluation results confirm that the proposed framework infers traffic violation-prone locations effectively and efficiently, providing comprehensive decision supports for traffic enforcement strategies.
324 - Daniel B. Neill 2017
We describe two recently proposed machine learning approaches for discovering emerging trends in fatal accidental drug overdoses. The Gaussian Process Subset Scan enables early detection of emerging patterns in spatio-temporal data, accounting for both the non-iid nature of the data and the fact that detecting subtle patterns requires integration of information across multiple spatial areas and multiple time steps. We apply this approach to 17 years of county-aggregated data for monthly opioid overdose deaths in the New York City metropolitan area, showing clear advantages in the utility of discovered patterns as compared to typical anomaly detection approaches. To detect and characterize emerging overdose patterns that differentially affect a subpopulation of the data, including geographic, demographic, and behavioral patterns (e.g., which combinations of drugs are involved), we apply the Multidimensional Tensor Scan to 8 years of case-level overdose data from Allegheny County, PA. We discover previously unidentified overdose patterns which reveal unusual demographic clusters, show impacts of drug legislation, and demonstrate potential for early detection and targeted intervention. These approaches to early detection of overdose patterns can inform prevention and response efforts, as well as understanding the effects of policy changes.
Over the past few years, ride-sharing has emerged as an effective way to relieve traffic congestion. A key problem for these platforms is to come up with a revenue-optimal (or GMV-optimal) pricing scheme and an induced vehicle dispatching policy that incorporate geographic and temporal information. In this paper, we aim to tackle this problem via an economic approach. Modeled naively, the underlying optimization problem may be non-convex and thus hard to compute. To this end, we use a so-called ironing technique to convert the problem into an equivalent convex optimization one via a clean Markov decision process (MDP) formulation, where the states are the driver distributions and the decision variables are the prices for each pair of locations. Our main finding is an efficient algorithm that computes the exact revenue-optimal (or GMV-optimal) randomized pricing schemes. We characterize the optimal solution of the MDP by a primal-dual analysis of a corresponding convex program. We also conduct empirical evaluations of our solution through real data of a major ride-sharing platform and show its advantages over fixed pricing schemes as well as several prevalent surge-based pricing schemes.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا