We investigate the magnetic field of a sunspot in the upper chromosphere and compare it to the fields photospheric properties. We observed the main leading sunspot of the active region NOAA 11124 on two days with the Tenrife Infrared Polarimeter-2 (TIP-2) mounted at the German Vacuum Tower Telescope (VTT). Through inversion of Stokes spectra of the He I triplet at 1083.0 nm, we obtained the magnetic field vector of the upper chromosphere. For comparison with the photosphere we applied height-depended
The fine-structure of magnetic field of a sunspot penumbra in the upper chromosphere is to be explored and compared to that in the photosphere. High spatial resolution spectropolarimetric observations were recorded with the 1.5-meter GREGOR telescope using the GREGOR Infrared Spectrograph (GRIS). The observed spectral domain includes the upper chromospheric He I triplet at 1083.0 nm and the photospheric Si I 1082.7 nm and Ca I 1083.3 nm spectral lines. The upper chromospheric magnetic field is obtained by inverting the He I triplet assuming a Milne-Eddington type model atmosphere. A height dependent inversion was applied to the Si I 1082.7 nm and Ca I 1083.3 nm lines to obtain the photospheric magnetic field. We find that the inclination of the magnetic field shows variations in the azimuthal direction both in the photosphere, but also in the upper chromosphere. The chromospheric variations remarkably well coincide with the variations in the inclination of the photospheric field and resemble the well-known spine and inter-spine structure in the photospheric layers of penumbrae. The typical peak-to-peak variations in the inclination of the magnetic field in the upper chromosphere is found to be 10-15 degree, i.e., roughly half the variation in the photosphere. In contrast, the magnetic field strength of the observed penumbra does not show variations on small spatial scales in the upper chromosphere. Thanks to the high spatial resolution observations possible with the GREGOR telescope at 1.08 microns, we find that the prominent small-scale fluctuations in the magnetic field inclination, which are a salient part of the property of sunspot penumbral photospheres, also persist in the chromosphere, although at somewhat reduced amplitudes. Such a complex magnetic configuration may facilitate penumbral chromospheric dynamic phenomena, such as penumbral micro-jets or transient bright dots.
Besides their own intrinsic interest, correct interpretation of solar surface magnetic field observations is crucial to our ability to describe the global magnetic structure of the solar atmosphere. Photospheric magnetograms are often used as lower boundary conditions in models of the corona, but not data from the nearly force-free chromosphere. National Solar Observatorys (NSO) Synoptic Optical Long-term Investigations of the Sun VSM (Vector Spectromagnetograph) produces full-disk line-of-sight magnetic flux images deriving from both photospheric and chromospheric layers on a daily basis. In this paper, we investigate key properties of the magnetic field in these two layers using more than five years of VSM data. We find from near-equatorial measurements that the east-west inclination angle of most photospheric fields is less than about 12{deg}, while chromospheric fields expand in all directions to a significant degree. Using a simple stereoscopic inversion, we find evidence that photospheric polar fields are also nearly radial but that during 2008 the chromospheric field in the south pole was expanding superradially. We obtain a spatially resolved polar photospheric flux distribution up to 80{deg} latitude whose strength increases poleward approximately as cosine(colatitude) to the power 9-10. This distribution would give a polar field strength of 5-6 G. We briefly discuss implications for future synoptic map construction and modeling.
Magnetic fields on the surface of the Sun and stars in general imprint or modify the polarization state of the electromagnetic radiation that is leaving from the star. The inference of solar/stellar magnetic fields is performed by detecting, studying and modeling polarized light from the target star. In this review we present an overview of techniques that are used to study the atmosphere of the Sun, and particularly those that allow to infer magnetic fields. We have combined a small selection of theory on polarized radiative transfer, inversion techniques and we discuss a number of results from chromospheric
The instrumental advances made in this new era of 4-meter class solar telescopes with unmatched spectropolarimetric accuracy and sensitivity, will enable the study of chromospheric magnetic fields and their dynamics with unprecedented detail. In this regard, spectropolarimetric diagnostics can provide invaluable insight into magneto-hydrodynamic (MHD) wave processes. MHD waves and, in particular, Alfvenic fluctuations associated to particular wave modes, were recently recognized as important mechanisms not only for the heating of the outer layers of the Suns atmosphere and the acceleration of the solar wind, but also for the elemental abundance anomaly observed in the corona of the Sun and other Sun-like stars (also known as first ionisation potential; FIP) effect. Here, we take advantage of state-of-the-art and unique spectropolarimetric IBIS observations to investigate the relation between intensity and circular polarisation (CP) fluctuations in a sunspot chromosphere. Our results show a clear link between the intensity and CP fluctuations in a patch which corresponds to a narrow range of magnetic field inclinations. This suggests the presence of Alfvenic perturbations in the sunspot.
Jayant Joshi
,Andreas Lagg
,Johann Hirzberger
.
(2017)
.
"Three-dimensional magnetic structure of a sunspot: comparison of the photosphere and upper chromosphere"
.
Jayant Joshi
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا